تأثیر بیوچار ذرت بر خصوصیات شیمیایی و میکروبیولوژیکی دو خاک آهکی رسی و شنی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 شرکت گیاه

2 هیات علمی

چکیده

چکیده
سابقه و هدف: بیوچار ماده کربنی است که از گرماکافت بقایای آلی در محیط اکسیژن محدود یا غیاب اکسیژن تولید می شود. بیوچار با بهبود خصوصیات فیزیکو شیمیایی مانند افزایش ظرفیت تبادل کاتیونی، تغییر pH خاک و افزودن عناصر غذایی، فعالیت میکروبی را تحریک می نماید. دمای گرماکافت و بافت خاک از عوامل مهم مؤثر بر رفتار بیوچار در خاک هستند. علیرغم اهمیت این دو متغیر، مطالعات کمی در ارتباط با تأثیر آنها بر خصوصیات شیمیایی و میکروبی خاک انجام شده است. هدف این تحقیق ارزیابی اثر بیوچارهای تهیه شده در دماهای متفاوت بر خصوصیات شیمیایی و میکروبیولوژیکی در خاک آهکی با بافت رسی و شنی بود.
مواد و روش ها: خاک های مورد استفاده در این تحقیق از لایه سطحی دو منطقه در اطراف کرج، استان البرز، نمونه برداری شدند. بقایای خام ذرت و بیوچارهای تهیه شده از بقایا در دماهای 200، 400 و 600 درجه سلسیوس به میزان 5/0 و 1 درصد وزنی با خاک مخلوط گردید. خصوصیات شیمیایی مانند pH و قابلیت هدایت الکتریکی، مواد آلی، نیتروژن معدنی، پتاسیم و فسفر قابل دسترس و خصوصیات میکروبیولوژیکی مانند تنفس ناشی از سوبسترا، کربن زیست توده میکروبی و فعالیت پروتئاز، ساکاراز، کاتالاز و هیدرولیز فلورسین دی استات اندازه گیری گردید.
یافته‌ها: نتایج نشان داد با افزایش دمای گرماکافت pH (%97-10)، درصد خاکستر (%378-75)، سطح ویژه (%1472-121)، درصد کربن (%54-19)، فاکتور غنی سازی کربن (%54-20) بیوچار افزایش یافت، در حالی که محصول بیوچار (%70-20)، ظرفیت تبادل کاتیونی (%45-12)، غلظت هیدروژن (%76-9) و مواد فرار (%70-16) کاهش یافت. مصرف بیوچار باعث افزایش pH (%5-2)، قابلیت هدایت الکتریکی (%66-8)، ماده آلی (%161-36)، نیتروژن آمونیمی (%28-6)، پتاسیم قابل دسترس (%40-12)، تنفس ناشی از سوبسترا (%216-50)، فعالیت کاتالاز (%320-34)، ساکاراز (%476-26)، پروتئاز (%186-3) و هیدرولیز فلورسین دی استات (%280-27) در مقایسه با شاهد گردید، در حالی که نیتروژن نیتراتی (%77-10) و فسفر قابل دسترس (%86-23) خاک کاهش یافت. با افزایش دمای گرماکافت و بیوچار شدن بقایای ذرت pH (%11-1)، قابلیت هدایت الکتریکی (%38-1)، ماده آلی (%179-18)، فسفر قابل دسترس (%150-2)، پتاسیم قابل دسترس (%25-5)را در مقایسه با بقایای خام ذرت افزایش داد، در حالی که نیتروژن آمونیمی (%43-7)، نیتروژن نیتراتی (%77-10)، کربن زیست توده میکروبی خاک (%27-4)، تنفس ناشی از سوبسترا (%39-2)، فعالیت کاتالاز (%54-21)، ساکاراز (%62-7/3)، پروتئاز (%54-0) و هیدرولیز فلورسین دی استات (%60-21) کاهش یافت.
بحث و نتیجه گیری: نتایج نشان داد تأثیر مثبت مصرف بیوچار بر خصوصیات شیمیایی و میکروبیولوژیکی خاکهای مورد مطالعه به میزان مصرف و بافت خاک بستگی دارد. بالاترین تأثیر بر خصوصیات شیمیایی و زیستی خاک در سطح مصرف %1 مشاهده گردید. از متغیرهای بررسی شده، فعالیت آنزیمی خاک بیشترین پاسخ را به کاربرد بیوچار نشان داد. بنابراین، بر اساس نقش بیوچار در افزایش ماده آلی و فعالیت میکروبی خاک، این ماده برای بهبود وضعیت میکروبیولوژیکی خاک و افزایش کیفیت خاک های آهکی ایران پیشنهاد می گردد.
واژه های کلیدی: بیوچار، دمای گرماکافت، سطح مصرف، فعالیت آنزیمی

کلیدواژه‌ها


عنوان مقاله [English]

The effects of corn biochar on the chemical and microbiological characteristics of two calcareous clay and sandy soils.

نویسندگان [English]

  • Fayez Raiesi 2
  • Hossein Besharati 2
2 دانشگاه شهرکرد
چکیده [English]

Background and objectives: Biochar is a carbon-rich material that is obtained by heating organic feedstock in a limited or absence of oxygen. In general, biochar stimulates soil microbial activity by improvements in soil physiochemical properties such as increasing cation exchange capacity, altering soil pH and direct addition of nutrients, porosity and water holding capacity. Pyrolysis temperature and soil texture are the significant factors affecting soil responses to biochar application. However, there are very limited studies on biochar impact on chemical and microbiological properties of calcareous soils. The aim of this study was to evaluate the effect of corn biochars obtained at different temperatures on the chemical and microbiological characteristics of two calcareous soils with sandy and clayey texture.

Materials and Methods: The soils used in this study were sampled from the surface layer at two different sites around Karaj city, Alborz province, Iran. Corn raw material and biochars produced at 200, 400 and 600˚C were mixed at 0.5 and 1% (w/w) with the soils and incubated for 90 days. Soil chemical parameters such as pH and electrical conductivity, organic matter, inorganic nitrogen, available K and P; microbiological characteristics including substrate-induced respiration, microbial biomass carbon and enzyme activities (protease, saccharase, catalase and fluorescein diacetate hydrolysis) were measured.
Results: The results showed that with increasing pyrolysis temperature, biochar pH (10-97%), ash content (75-378%), specific surface area (214-1472%), carbon content (19-54%) and carbon enrichment factor (20-54%) were increased, while the cation exchange capacity (12-45%), concentration of hydrogen (76-9%) and volatile matter (16-70%) were reduced. Biochar application increased soil pH (2-5%), electrical conductivity (8-66%), organic matter (36-161%), ammonium-nitrogen (6-28%), available potassium (12-40%), substrate-induced respiration (50-216%), catalase activity (34-320%), saccharase (26-476%), protease (3-186%) and hydrolysis of fluorescein diacetate (27-280%) relative to the control, whereas nitrate-nitrogen (10-77%) and available phosphorus (23-86%) tended to decrease with biochar addition. Increasing pyrolysis temperature increased soil pH (1-11%), electrical conductivity (1-38%), organic matter (18-179%), available phosphorus (2-150%), available potassium (5-25%) when compared with the raw corn residues, while decreased ammonium-nitrogen (7-43%), nitrate-nitrogen (10-77%), microbial biomass carbon (4-27%), substrate-induced respiration (2-39%), catalase activity (21-54%), saccharase (3.7-62%), protease (0-54%) and fluorescein diacetate hydrolysis (21-60%).
Discussion and Conclusions: The findings demonstrated that the positive effect of biochar application on soil chemical and microbiological properties depends upon its application rate, soil texture and the soil attributes involved. The most desirable effect of corn biochars on soil chemical and microbiological properties was observed at 1% application rate in sandy soil. Of the evaluated soil variables, enzyme activity showed the greatest response to biochar application. In brief, biochar is a valuable soil amendment with a positive effect on soil quality in arid and semi-arid environments. Therefore, biochar application is recommended for increasing soil organic matter pool, and consequently improving chemical and microbiological conditions of calcareous soils in Iran.


Keywords: Application rate, Biochar, Enzyme activity, Pyrolysis temperature.

کلیدواژه‌ها [English]

  • application rate
  • Biochar
  • enzyme activity
  • pyrolysis temperature
1.Afshari, A., Khademi, H., and Delavar, M.A. 2015. Evaluation of Heavy Metal Contamination
Using Pollution Factor in Soil Land with Different Uses in the Central District of Zanjan
Province. J. Water Soil Cons. 25: 4. 41-52. (In Persian)
2.Agrawal, M. 2003. Enhancing Food Chain Integrity: Quality Assurance Mechanism for Air
Pollution Impacts on Food and Vegetable System. Final Technical Report (R7530)
Submitted to Department for International Development, United Kingdom.
3.Al-Jassir, M.S., Shaker, A., and Khaliq, M.A. 2005. Deposition of heavy metals on green
leafy vegetables sold on roadsides of Riyadh city, Saudi Arabia. Bulletin of Environmental
Contamination and Toxicology. 75: 1020-1027.
4.Amer, N., Chami, Z.A., Bitar, L.A., Mondelli, D., and Dumontet, S. 2013. Evaluation of
Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb
and Zn. Inter. J. Phytoremed. 15: 498-512.
5.Anwar, S., Nawaz, M.F., Gul, S., Rizwan, M., Ali, S., and Kareem, A. 2016. Uptake and
distribution of minerals and heavy metals in commonly grown leafy vegetable species
irrigated with sewage water. Environmental monitoring and assessment. 188: 541 .
6.Azimi, S., Cambier, P., Lecuyer, I., and Thevenot, D. 2004. Heavy metal determination in
atmospheric deposition and other fluxes in Northern France agrosystems. Water, Air and
Soil Pollution. 157: 295-313.
7.Bahmani, B., Delavar, M.A., and Safari, Y. 2013. Geostatistical analysis and risk assessment
of soil and plant contaminated by lead and zinc in Zanjan zinc industrial area. M.Sc. Thesis
on Dept of Soil Science, University of Zanjan. (In Persian)
8.Bigdeli, M., and Seilsepour, M. 2008. Investigation of metals accumulation in some
vegetables irrigated waste water in Shahre Rey-Iran and toxicological implications.
American-Eurasian J. Agric. Environ. Sci. 4: 1. 86-92.
9.Bouyoucos, C.J. 1962. Hydrometer method improved for making particle size analysis of soil.
Agron. J. 54: 464-465.
10.Burt, R. 2004. Soil survey laboratory methods manual: soil survey investigations report
No. 42 Version 4.0. Nebraska: United States Department of Agriculture, Natural Resources
Conservation Service.
11.Cariny, T. 1995. The Reuse of Contaminated Land. John Wiley and Sons Ltd. Pub., USA,
219p.
12.Chary, N.S., Kamala, C.T., and Raj, D.S.S. 2008. Assessing risk of heavy metals from
consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and
environmental safety. 69: 3. 513-524.
13.Chen, M., Qin, X., Zeng, G., and Li, J. 2016. Impacts of human activity modes and climate
on heavy metal “spread” in groundwater are biased. Chemosphere. 152: 439-445.
14.Chukwuji, M.A.I., Nwajei, G.E., and Osakwe, S.A. 2005. Recycling waste in agriculture:
Efficacy of composting in ameliorating trace metal availability and soil borne pathogens.
Europ. J. Sci. Res. 11: 572-577.
15.Cui, Y.J., Zhu, Y.G., Zhai, R.H., Chen, D.Y., Huang, Y.Z., Qiu, Y., and Liang, J.Z. 2004.
Transfer of metalsfrom soil to vegetables in an area near a smelter in Nanning, China.
Environment International. 30: 6. 785-791.
16.Diani, M., Mohammadi, J., and Naderi, M. 2009. Geostatistical Analysis of Pb, Zn and Cd
concentration in soil of Sepahanshahr suburb (south of Esfahan). J. Water Soil. 23: 4. 67-76.
(In Persian)
17.Geng, J., Wang, Y., and Luo, H. 2015. Distribution, sources and fluxes of heavy metals in
the Pearl River Delta, South China. Marine pollution bulletin. 101: 914-921.
18.Gilmour, J.T., and Kittrick, J.A. 1979. Solubility and equilibria of zinc in a flooded soil.
Soil Sci. Soc. Amer. J. 43: 5. 890-892.
19.Heydari, H. 2003. Research project of Zanjan wind Atlas. Departmant of meterology of
Zanjan Province. (In Persian)
20.Jo, O.W., and Nwabue, F.I. 2012. Heavy Metals effect due to Contamination of Vegetables
from Enyigba Lead Mine in Ebonyi State, Nigeria, Environment and Pollution. 2: 1. 19-26.
21.Jones, Jr.J.B., and Case, V.W. 1990. Sampling, handling and analyzing plant tissue samples.
Sampling handling and analyzing plant tissue samples. 3: 389-427.
22.Kabata-Pendias, A., and Pendias, H. 2001. Trace elements in soils and plants. Third Ed. CRC
press. Boca Raton, London, 432p.
23.Kaznina, N.M., Titov, A.F., Laidinen, G.F., and Talanov, A.V. 2009. Setaria Viridis
tolerance of high zinc concentrations. 36: 6. 575-581.
24.Lindsay, W.L., and Norvell, W.A. 1978. Development of DTPA soil test for zinc, iron,
manganese and copper. Soil Science Society of America, Proceedings. 42: 421-428.
25.Mirshekali, H., Hadi, H., Khodaverdiloo, H., and Amirnia, R. 2014. Assessing the Efficiency
of Sorghum (Sorghum Bicolor) and Common Lambsquarter (Chenopodium Album) in
Phytoremediation of Zn from Soil. JWSS. 18: 67. 1-9.
26.Nazemi, S., Asgari, A.R., and Raei, M. 2010. Survey the amount of heavy metals in cultural
vegetables in suburbs of Shahroud. Iran. J. Health Environ. 3: 2. 195-202. (In Persian)
27.Nikolić, D., Milošević, N., Živković, Ž., Mihajlović, I., Kovačević, R., and Petrović, N.
2011. Multi-criteria analysis of soil pollution by heavy metals in the vicinity of the Copper
Smelting Plant in Bor (Serbia). J. Serbian Chem. Soc. 76: 4. 625-641.
28.Nimrozi, A., and Moaf Porian, G. 2011. Evaluation of heavy metals distribution in soil of
Ab-Barik Industrial area in Shiraz province. The 31th meeting of Earth Sciences, Pp: 1-7.
(In Persian)
29.Nourian, M., Delavar, M.A., Shekari, P., and Abdollahi, S. 2012. Study of distribution of soil
pollution by heavy metals with geostatistics and fuzzy clusterin g in Dizajabad area, Zanjan
Province, J. Water Soil Cons. 21:1. 125-143.
30.Onder, S., Dursun, S., Gezgin, S., and Demirbas, A. 2007. Determination of heavy metal
pollution in grass and soil of city centre green areas (konya, Turkey). Polish J. Environ. Stud.
16: 1. 145-154.
31.Parizanganeh, A., Hajisoltani, P., and Zamani, A. 2010. Assessment of heavy metal
pollution in surficial soils surrounding Zinc Industrial Complex in Zanjan-Iran. Procedia
Environmental Sciences. 2: 162-166.
محمد بابااکبری ساری و همکاران
67
32.Raicevic, S., Perovic, V., and Zouboulis, A.I. 2009. Theoretical assessment of
phosphate amendments for stabilization of (Pb + Zn) in polluted soil. Waste Management.
29: 5. 1779-1784.
33.Rastgar, M.A. 1998. Weeds and their control methods. University of Tehran Press, 414p.
(In Persian)
34.Richards, L.A. 1969. Diagnosis and Improvement of Saline and Alkali Soils. US Salinity
Laboratory Staff. Agricultural Handbook. No 60. USDA. US, 160p.
35.Sanchez-Camazano, M., Sanchez-Martin, M.J., and Lorenzo, L.F. 1994. Lead and cadmium
in soils and vegetables from urban gardens of Salamanca (Spain). Science of the Total
Environment. 146: 163-168.
36.Shakeri, A., Modaberi, S., Ghasemi, M., and Sayare, A. 2008. Pollution and Distribution of
heavy metals in soils of Hashtgerd area, North West of Tehran. The 34th National and the 2nd
International Geosciences Congress, Pp: 1-5. (In Persian)
37.Sharma, R.K., Agrawal, M., and Marshall, F.M. 2007. Heavy metals contamination of soil
and vegetables in suburban areas of Varanasi, India. Ecotoxicology and environmental
safety. 66: 258-266.
38.Sharma, S., and Prasad, F.M. 2010. Accumulation of Lead and Cadmium in soil and
vegetable crops along major highways in Agra (India). J. Chem. 7: 4. 1174-1183.
39.Singh, S., and Kumar, M. 2006. Heavy Metal Load of Soil, Water and Vegetables in
Peri-Urban Delhi. Environmental Monitoring and Assessment. 120: 1. 79-91.
40.Sposito, G., Land, L.J., and Chang, A.C. 1982. Trace metal chemistry in aird-zone field
soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases.
Soil Sci. Soc. Amer. J. 46: 2. 260-264.
41.Tabande, L., and Taheri, M. 2016. Assessment of Pollution and Relationship between Heavy
Metals Concentration in Soil and Leafy Vegetables in Zanjan Province. Iran. J. Soil Res.
30: 1. 49-60. (In Persian)
42.Türkdoğan, M.K., Kilicel, F., Kara, K., Tuncer, I., and Uygan, I. 2003. Heavy metals in soil,
vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey.
Environmental toxicology and pharmacology. 13: 3. 175-179.
43.Voutsa, D., Grimanis, A., and Samara, C. 1996. Trace elements in vegetables grown in
an industrial area in relation to soil and air particulate matter. Environmental pollution.
94: 3. 325-335.
44.Walkley, A., and Black, I.A. 1934. Examination of the degtjareff method determination
soil organic matter and a proposed modification of the chromic acid titration method.
Soil Science. 34: 29-38.
45.Zheng, N., Wang, Q., Zhang, X., Zheng, D., Zhang, Z., and Zhang, S. 2007. Population
health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China.
Science of the Total Environment. 387: 1. 96-104.