تأثیر باکتری‌های محرک رشد و کاربرد کلرید سدیم بر رشد رویشی گندم و برخی از شاخص‌های‌زیستی خاک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل ایران دانشگاه محقق اردبیلی

2 گروه علوم و مهندسی خاک، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل ایران

3 ‪گروه علوم و مهندسی خاک، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل ایران

4 ‪گروه علوم و مهندسی خاک، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل ایران دانشگاه اردبیل

چکیده

سابقه و هدف: تأثیر باکتری‌های محرک رشد گیاه بر افزایش عملکرد گندم اثبات شده است؛ با وجود این، تأثیر این باکتری‌ها بر کیفیت زیستی خاک به ویژه در شرایط وجود تنش در خاک از جمله تنش شوری، کمتر مورد مطالعه قرار گرفته است. لذا هدف از این تحقیق بررسی تأثیر این باکتری‌ها بر بهبود شاخص‌های زیستی خاک زیر کشت گندم و تحت شرایط تنش شوری بود.
مواد و روش‌ها: به‌منظور بررسی تأثیر باکتری‌های محرک رشد گیاه بر برخی شاخص‌های زیستی خاک و پارامترهای رشد گندم رقم گاسپارد در شرایط تنش شوری، آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با 3 تکرار انجام گرفت. فاکتورهای آزمایش شامل شوری در چهار سطح: شاهد، 6، 8 و 10 (دسی زیمنس بر متر) و مایه‌زنی باکتری در سه سطح (مایه‌زنی بذر با سودوموناس فلورسنس، مایه‌زنی بذر با سودوموناس پوتیدا و بدون مایه‌زنی) بود. پس از پایان آزمایش (سه ماه)، پارامترهای عملکرد گیاه از قبیل حجم ریشه، ارتفاع گیاه، وزن خشک و وزن تر ریشه و ساقه گیاه اندازه‌گیری شد. همچنین شاخص‌های زیستی خاک ازجمله کربن زیتودة میکروبی و نیز تنفس پایه و تنفس برانگیخته اندازه‌گیری شدند.
یافته‌ها: نتایج نشان داد که با افزایش سطح شوری شاخص‌های زیستی خاک و پارامترهای رشد گیاه مورد مطالعه در این پژوهش کاهش یافت؛ اما کاربرد باکتری‌ها باعث افزایش پارامترهای رشد گیاه شدند. مایه‌زنی بذر با سودوموناس فلورسنس و سودوموناس پوتیدا به ترتیب موجب افزایش 83% و 25% در حجم ریشه، 38% و 7% در وزن خشک ریشه، 52% و 50% در وزن تر ریشه نسبت به شرایط بدون مایه‌زنی در شوری 6 دسی زیمنس بر متر گردید. همچنین بیشترین کربن زیتوده میکروبی (1997 میلی‌گرم کربن میکروبی بر کیلوگرم خاک) در شرایط مایه‌زنی با باکتری سودوموناس پوتیدا در شوری 6 دسی زیمنس بر متر مشاهده شد. مایه‌زنی با باکتری سودوموناس فلورسنس در شرایط بدون شوری توانست کربن زیتوده میکروبی خاک را از 987 به 1765 میلی‌گرم کربن میکروبی بر کیلوگرم خاک برساند. درتمام سطوح شوری، مایه‌زنی با هر دو باکتری موجب افزایش معنی‌دار تنفس پایه و برانگیخته نسبت به شرایط بدون مایه‌زنی شد.
نتیجه‌گیری: می‌توان نتیجه گرفت که حضور باکتری‌های محرک رشد گیاه، نه تنها پارامترهای رشد و عملکرد گندم را در شرایط تنش شوری افزایش می‌دهد، بلکه این باکتری‌ها شاخص‌های زیستی خاک از قبیل کربن زیتوده میکروبی، تنفس پایه و تنفس برانگیخته خاک را نیز بهبود بخشیده و از این طریق به طور غیر مستقیم شرایط رشد گیاه را بهبود داده و موجب افزایش عملکرد گیاه می‌شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Plant Growth Promoting (PGPR) and the Application of Sodium Chloride on Growth of Wheat and Some of Soil Biological Indices

نویسندگان [English]

  • Akbar Ghavidel 1
  • Raheleh Vafadar 2
  • Esmail Goli Kalanpa 3
  • Ali Ashraf Soltani 4
1 Department of Soil Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 Department of Soil Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
3 Department of Soil Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
4 Department of Soil Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Background and objectives: The effect of plant growth promoting bacteria on increasing wheat yield has been demonstrated. Nevertheless, the effect of these bacteria on soil biological quality particularly in the stress conditions such as soil salinity was seldom studied. Therefore, the aim of this study was to investigate the effect of these bacteria on improving biological indices of soil under cultivation of wheat and salinity condition.
Materials and methods: In order to investigate the effect of inoculation with plant growth promoting bacteria (PGPB) on some soil biological indices and wheat growth parameters under salinity stress, a factorial experiment was conducted based on completely randomized design with three replications. The factors were salinity at four levels, control, 6, 8 and 10 dS.m-1, inoculation with plant growth promoting bacteria at three level, no-inoculation, and inoculation with Pseudomonas putida and inoculation with Pseudomonas fluoresces. After the growth period, the plant yield parameters such as the root volume, root and shoot fresh and dry weight, were measured. The organic carbon, microbial biomass carbon, respiration and substrate–induced respiration was also determined.
Results: The results showed that the soil biological indices and plant growth parameters significantly decreased as the soil salinity increased; however inoculation with the bacteria significantly increased plant growth parameters. The inoculation with P. fluorescens and P.putida compared to the control (without inoculation) increased root volume by 83% and 25%, root dry weight by 38% and 7%, and root fresh weight by 52% and 50%, in the salinity level of 6 dS.m-1 respectively. The highest microbial biomass carbon (1997 mg Cmic. Kg-1 dry soil) was observed in inoculation with P.putida. Inoculation with P. fluorescens could also increase soil microbial biomass carbon in the control from 987 to 1765 mg Cmic. Kg-1 dry soil. Compared to no-inoculation, inoculation with both bacteria in all salinity levels increased soil basal respiration and substrate-induced respiration.
Conclusion: It could be concluded that the presence of plant growth promoting bacteria not only increased plant growth parameters under salinity stress, but also they improved soil biological indices such as soil microbial biomass carbon, basal respiration, and substrate-induced respiration and thereby indirectly enhanced plant growth conditions and increased plant yield quantity and quality.
Conclusion: It could be concluded that the presence of plant growth promoting bacteria not only increased plant growth parameters under salinity stress, but also they improved soil biological indices such as soil microbial biomass carbon, basal respiration, and substrate-induced respiration and thereby indirectly enhanced plant growth conditions and increased plant yield quantity and quality.

کلیدواژه‌ها [English]

  • Pseudomonas fluoresces
  • Pseudomonas putida
  • Soil Biological Indices Salinity Stress
  • and Soil Quality
1.Carver, B.F. 2009. Wheat: science and trade. John Wiley & Sons. New York, 616p.
2.Allakhverdiev, S.I., Sakamoto, A., Nishiyama, Y., Inaba, M., and Murata,
N. 2000. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant physiology. 123: 3. 1047-56.
3.Moud, A.M., and Maghsoudi, K. 2008. Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. World J. Agric. Sci. 4: 3. 351-358.
4.Ahmad, I., Pichtel, J., and Hayat, S. 2008. Plant-bacteria Interactions: Strategies and Techniques to promote plant growth: John Wiley & Sons. New York, 330p.
5.Mayak, S., Tirosh, T., and Glick, B.R. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry. 42: 6. 565-572.
6.Bacilio, M., Rodriguez, H., Moreno, M., Hernandez, J.P., and Bashan, Y. 2004. Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biology and Fertility of Soils. 40: 3. 188-93.
7.Mayak, S., Tirosh, T., and Glick, B.R. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science.
166: 2. 525-530.
8.Zahir, Z.A., Ghani, U., Naveed, M., Nadeem, S.M., and Asghar, H.N. 2009. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Archives of Microbiology. 191: 5. 415-424.
9.Glick, B.R., Patten, C.L., Holguin, G., and Penrose, D. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. World Scientific, Singapore. 276p.
10.Nadeem, S.M., Zahir, Z.A., Naveed, M., and Arshad, M. 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can. J. Microbiol. 53: 10. 1141-1149.
11.Grichko, V.P., and Glick, B.R.
2001. Amelioration of flooding stress by ACC deaminase-containingplant growth-promoting bacteria. Plant Physiology and Biochemistry. 39: 1. 11-7.
12.Belimov, A., Hontzeas, N., Safronova, V., Demchinskaya, S., Piluzza, G., Bullitta, S., and Glick, B.R. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry. 37: 2. 241-250.
13.Wang, D., Shannon, M., and Grieve, C. 2001. Salinity reduces radiation absorption and use efficiency in soybean. Field Crops Research. 69: 3. 267-277.
14.Zahir, Z.A., Arshad, M., and Frankenberger, W.T. 2003. Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Advances in Agronomy. 81: 97-168.
15.Belimov, A.A., Safronova, V.I., and Mimura, T. 2002. Response of
spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria containing
1- aminocyclopropane- 1-carboxylate deaminase depends on nutrient status of the plant. Can. J. Microbiol. 48: 3. 189-199.
16.Gupta, A., Gopal, M., and Tilak, K. 2000. Mechanism of plant growth promotion by rhizobacteria. Ind. J. Exper. Biol. 38: 856-863.
17.Jackson, M.L. 1958. Soil chemical analysis: Prentice-Hall, Inc.; Englewood Cliffs. NJ. 498p.
18.Olsen, S., and Sommers, L. 1982. Phosphorus in Methods of Soil Analysis Part 2. Chemical and Microbiolgial Properties. Agronomy Monograph. 1159p.
19.Nelson, R.E., and Sommers, L.E. 1982. Total Carbon, Organic Carbon and Organic Matter. In: Keeney, D.R., Baker, D.E., Miller, R.H., Ellis, R.J. and Rhoades., J.D., Eds., Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, American Society of Agronomy, Soil Science, Madison, Pp: 539-580.
20.Abbszadeh, P. 2006. Isolation and Identification of plant grwoth promoting flourscent Pseudomonas and the study of thier impact on grwoth and yield of Rapeseed. Iran: M.Sc. Thesis at University of Tehran. (Translated in Persian)
21.Schinner, F., Öhlinger, R., Kandeler, E., and Margesin, R. 2012. Methods in Soil Biology: Springer Berlin Heidelberg. 426p.
22.Annunziata, M.G., Ciarmiello, L.F., Woodrow, P., Maximova, E., Fuggi, A., and Carillo, P. 2017. Durum Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and Sucrose. Frontiers in Plant Science. 7: 1-16.
23.de Freitas, J.R., and Germida, J.J. 1992. Growth promotion of winter wheat by fluorescent pseudomonads under field conditions. Soil Biology and Biochemistry. 24: 11. 1137-1146.
24.Gorham, J. 1995. Mechanism of salt tolerance of halophytes. Halophytes
and biosaline agriculture. CRC Press, New York. 424p.
25.Kausar, R., and Shahzad, S. 2006. Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. J. Agric. Soc. Sci.
2: 4. 216-218.
26.Celebi, S.Z., Demir, S., Celebi, R., Durak, E.D., and Yilmaz, I.H. 2010. The effect of Arbuscular Mycorrhizal Fungi (AMF) applications on the silage maize (Zea mays L.) yield in different irrigation regimes. Europ. J. Soil Biol. 46: 5. 302-305.
27.Gholami, A., Shahsavani, S., and Nezarat, S. 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Inter. J. Biol. Life Sci.
1: 1. 35-40.
28.Cheng, Z., Park, E., and Glick,
B.R. 2007. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol. 53: 7. 912-918.
29.Larsen, J., Cornejo, P., and Barea, J.M. 2009. Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus. Soil Biology and Biochemistry.
41: 2. 286-292.
30.Pathak, H., and Rao, D. 1998. Carbon and nitrogen mineralization from added organic matter in saline and alkali
soils. Soil Biology and Biochemistry. 30: 6. 695-702.
31.Lopes, E.B.M. 2001. Diversidade metabólica em solo tratado com biossólidos. Ph.D. Dissertation, Universidade de São Paulo, Brazil.
32.Sardinha, M., Müller, T., Schmeisky, H., and Joergensen, R.G. 2003. Microbial performance in soils along a salinity gradient under acidic conditions. Applied Soil Ecology. 23: 3. 237-244.
33.Ghollarata, M., and Raiesi, F. 2007. The adverse effects of soil salinization on the growth of Trifolium alexandrinum L. and associated microbial and biochemical properties in a soil from Iran. Soil Biology and Biochemistry.
39: 7. 1699-1702.