1.Amer, A.M., and Sediek, K.N. 2003. Compositional and technological characteristics of selected
gluacony deposits of North Africa. Physicochemical Prob. Miner. Process. 37: 159-168.
2.Amtmann, A., Troufflard, S., and Armengaud, P. 2008. The effect of potassium nutrition on
pest and disease resistance in plants. Physiol. Plant. 133: 682-691.
3.Basak, B., and Biswas, D. 2009. Influence of potassium solubilizing microorganism (Bascillus
mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum
vulgare Pers.) grown under two Alfisols. Plant Soil. 317: 235-255.
4.Bidhan, C.H. 2001. Techno market survey on technologies. For Agricultural Application of
Glauconite. A potash mineral, Tifac Publication, New Delhi.
5.Bruulsema, T., Jackson, J., Rajcan, I., and Vyn, T. 2000. Functional food components: A role
for potassium. Better Crops. 2: 1-7.
6.Cakmak, I. 2005. The role of potassium in alleviating detrimental effects of abiotic stresses in
plants. J. Plant Nutr. Soil Sci. 68: 521-530.
7.Carmody, O. 2001. Why grow canola in the central grain belt. Bulliten 4492, Agricultural
Western Australia, South Perth, Australia.
8.Castro, L., and Tourn, S. 2003. Direct application of phosphate rocks and glauconite as
alternative sources of fertilizer in Argentina. Explor. Mining Geol. 12: 71-78.
9.El-Habaak, G., Askalany, M., Faraghaly, M., and Abdel-Hakeem, M. 2016. The economic
potential of El-Gedida glauconite deposits, El-Bahariya. J. Afric. Earth Sci. 120: 186-197.
10.Franzosi, C., Castro, L.N., and Celeda, A.M. 2014. Technical evaluation of glauconies as
alternative potassium fertilizer from the Salamanca formation, Patagonia, Southwest
Argentina. Nat. Resour. Res. 23: 311-320.
11.Harper, F. 1999. Principles of arable crop production. Blackwell Science Ltd, Pp: 109-111.
12.Hinsinger, P. 2002. Potassium. P 1035-1039, In: R. LaI (Eds.), Encyclopedia of Soil Science.
Marcel Dekker, Inc. New York, USA.
13.Karimi, E., Abdolzadeh, A., Sadeghipour, H.R., and Amini, A. 2011. The potential of
glauconitic sandstone as a potassium fertilizer for olive Plants. Arch. Agron. Soil Sci.
58: 9. 1-11.
14.Khayamim, F., and Khademi, H. 2010. The ability of three plant species to take up potassium
from phlogopite. J. Plant Prod. 17: 4. 91-109.
15.Leofond, S. 1993. Industrial mineral and rock, American Institute of mining, metallurgical
and petroleum engineers, Inc, vol 2, 5th edtion, 1446p.
16.Levchenko, E., Ptyk-Kara, N., and Levchenko, M. 2008. Glauconite deposits of Russia:
Perspectives of development. P 6-14, In: Abstracts. International Geological Congress, Oslo,
August 2008. http://www.cprm.gov.br/33IGC/1259.
17.Malakouti, M.J., and Homaee, M. 1995. Soil fertility in arid regions. Tarbiat Modarres
University Press, 580p.
18.Marschner, P. 2012. Marschner’s mineral nutrition of higher plants. Third Edition. Academic
Press is an imprint of Elsevier, 643p.
19.Mazumder, A.K., and Sharma, T., and Rao, T.C. 1995. Extraction of Potassium from
Glauconite Sandstone by Roast-Leach Method: Int. J. Min. Process. 38: 111-123.
20.Meyer, D., and Jung, A. 1993. Plant availability of non-exchangable potassium, a new
approach. Plant Soil. 149: 235-243.
21.Moxham, A.J. 1929. Treating 266 greensands to produce sulphates: US Patent 1737263.
22.Nemeth, K. 1979. The availability of nutrients in the soil as determined by
electroultrafiltration (EUF). Adv. Agron. 31: 155-188.
23.Oliveira Santo, W., Marcio Mattiello, E., Vergutz, L., and Fagundes Costa, R. 2016.
Production and evaluation of potassium fertilizers from silicate rock. J. Plant Nutr. Soil Sci.
000: 1-10.
24.Oliveira Santo, W., Marcio Mattiello, E., Almeida Pacheco, A., Vergutz, L., da Silva Souza-
Filho, L.F., and Abdala D.B. 2017. Thermal treatment of a potassium-rich metamorphic rock
in formation of soluble K forms. Int. J. Miner. Process. 159: 16-21.
25.Rahimzadeh1, N., Olamaei, M., Khormali, F., Dordipour, E., and Amini, A. 2013. The effect
of silicate dissolving bacteria on potassium release from glauconite in Canola (Brassica
napus) rhizosphere. J. Soil Manage. Sust. Prod. 3: 2. 169-186.
26.Rao, C.S., and Rao, A.S. 1999. Characterization of indigenous glauconitic sandstone for its
potassium-supplying potential by chemical, biological and electroultrafiltration methods.
Commun. Soil Sci. Plant Anal. 30: 7. 1105-1117.
27.Rawlley, R.K. 1994. Mineralogical investigations on Indian glauconitic sandstone of
Madhya Pradesh state. Appl. Clay Sci. 8: 449-465.
28.Shreve, N.R. 1921. Action of Lime on Greensand: Jour. Ind. Eng. Chem. 13: 693-695.
29.Simard, R., and Zizka, J. 1994. Evaluating plant available potassium with strontium chloride.
Commun. Soil Sci. Plant Anal. 25: 1779-1789.
30.Sparks, D.L., and Huang, P.M. 1985. Physical chemistry of soil potassium. P 201-276, In: R.D.
Munson (Eds.), Potassium in agriculture. American Society of Agronomy, Madison, WI.
31.Stahlbergh, S. 1959. Studies on the release of bases from minerals and soils. I. The release of
potassium from potassium feldspar and mica in contact with synthetic ion exchangers. Acta.
Agric. Scand. 9: 361-369.
32.Tschirner, F. 1918. Manufacture of potassium compounds from glauconite and like minerals:
Patents GB 117870 (A).
33.Walker, D.J., Leigh, R.A., and Miller, A.J. 1996. Potassium homeostasis in vacuolate plant
cells. Proc Natl Acad Sci USA. 93: 10510-10514.
34.Wentworth, S.A., and Rossi, N. 1972. Release of potassium from layer silicates by plant
growth and by NaTPB extraction. Soil Sci. 113: 410-416.
35.Wiersema, J.H., and León, B. 2013. World Economic Plants: A Standard Reference, Second
Edition. CRC Press, Pp: 556-559.
36.Yadav, V.P., Sharma, T., and Saxena, V.K. 2000. Dissolution kinetics of potassium from
glauconitic sandstone in acid lixiviant. Int. J. Miner. Process. 60: 5-36.