1.Agarwal, S., Agarwal, A., and Apple, D.J. 2002. Textbook of Ophthalmology. Lippincott
Williams and Wilkins. The University of Michigan. 1: 2098.
2.Anderson, J.P.E. 1982. Soil respiration. P 831-871, In: A.L. Page, R.H. Miller and D.R.
Keeney (Eds.), Methods of Soil Analysis, Part 2. Chemical and microbiological properties.
Agronomy Monograph.
3.Anderson, T.H., and Domsch, K.H. 1990. Application of eco-physiological quotient (qCO2
and Dq) on microbial biomasses from soils of different cropping histories. Soil Biol.
Biochem. 22: 251-255.
4.Boxall, A.B.A., Blackwell, P., Cavallo, R., Kay, P., and Tolls, J. 2002. The sorption and
transport of a sulphonamide antibiotic in soil systems. Toxicol. Lett. 131: 19-28.
5.Campos, J.L., Garrido, J.M., Mendez, R., and Lema, J.M. 2001. Effect of two broad-spectrum
antibiotics on activity and stability of continuous nitrifying system. Appl. Biochem.
Biotechnol. 95: 1-10.
6.Conkle, J.L., and White, J.R. 2012. An initial screening of antibiotic effects on microbial
respiration in wetland soils. J. Environ. Sci. Health A. 47: 1381-1390.
7.Ding, C., and He, J. 2010. Effect of antibiotics in the environment on microbial populations.
Appl. Microbiol. Biotechnol. 87: 925-941.
8.Gonzalez, L.S., and Spencer, J.P. 1998. Aminoglycosides: a practical review. Am Fam
Physician. 58: 8. 1811-20.
9.Herron, P.R., Toth, I.K., Heilig, G.H.J., Akkermans, A.D.L., Karagouni, A., and Wellington,
E.M.H. 1998. Selective effect of antibiotics on survival and gene transfer of Streptomycetes
in soil. Soil Biol. Biochem. 30: 673-677.
10.Jones, A.D., Bruland, G.L., Agrawal, S.G., and Vasudevan, D. 2005. Factors influencing the
sorption of oxytetracycline to soils. Environ Toxicol Chem. 24: 4. 761-770.
11.Kümmerer, K. 2003. Significance of antibiotics in the environment. J. Antimicrobial.
Chemotherapy. 52: 1. 5-7.
12.Liu, F., Ying, G.G., Tao, R., Zhao, J.L., Yang, J.F., and Zhao, L.F. 2009. Effects of six
selected antibiotics on plant growth and soil microbial and enzymatic activities. Environmen.
Pollut. 157: 1636-1642.
13.Liu, F., Ying, G.G., Yang, J.F., Zhou, L.J., Tao, R., Wang, L., Zhang, L.J., and Peng, P.A.
2010. Dissipation of sulfamethoxazole, trimethoprim and tyrosine in a soil under aerobic and
anoxic conditions. Environ. Chem. 7: 370-376.
14.Loke, M.L., Tjørnelund, J., and Halling-Sørensen, B. 2002. Determination of the distribution
coefficient (log Kd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure.
Chemosphere. 48: 351-361.
15.Roose-Amsaleg, C., and Laverman, A.M. 2016. Do antibiotics have environmental
side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ. Sci.
Pollut. Res. Int. 23: 4000-4012.
16.Rosendahl, I., Siemens, J., Kindler, R., Groeneweg, J., Zimmermann, J., Czerwinski, S.,
Lamshoeft, M., Laabs, V., Wilke, B.M., Vereecken, H., and Amelung, W. 2012. Persistence
of the fluoroquinolone antibiotic difloxacin in soil and lacking effects on nitrogen turnover.
J. Environ Qual. 41: 1275-1283.
17.Sarmah, A.K., Meyer, M.T., and Boxall, A.B.A. 2006. A global perspective on the use, sales,
exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the
environment. Chemosphere. 65: 725-759.
18.Schmieder, R., and Edwards, R. 2012. Insights into antibiotic resistance through
metagenomic approaches. Future Microbiol. 7: 73-89.
19.Sibley, S.D., and Pedersen, J.A. 2008. Interaction of the macrolide antimicrobial
clarithromycin with dissolved humic acid. Environ. Sci. Technol. 42: 422-428.
20.Song, W., and Guo, M. 2014. Residual Veterinary Pharmaceuticals in Animal Manures and
Their Environmental Behaviors in Soils. P 23-52, In: Z. He and H. Zhang (Eds.), Applied
Manure and Nutrient Chemistry for Sustainable Agriculture and Environment.
21.Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A.,
Johnson, C.T., and Sumner, M.E. 1996. Methods of Soil Analysis: Part 3-Chemical Methods.
Soil Science Society of America, Washington, DC.
22.Stewart, P.S. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med.
Microbiol. 292: 107-113.
23.Stookey, L.L. 1970. Ferrozine- a new spectrophotometric reagent for iron. Anal. Chim.
42: 779-781.
24.Thiele-Bruhn, S. 2003. Pharmaceutical antibiotic compounds in soils - a review. J. Plant
Nutr. Soil Sci. 166: 145-167.
25.Thiele-Bruhn, S., Seibicke, T., Schulten, H.R., and Leinweber, P. 2004. Sorption of
sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J. Environ.
Qual. 33: 1331-1342.
26.Thiele-Bruhn, S. 2005. Microbial inhibition by pharmaceutical antibiotics in different soilsdose-
response relations determined with the iron (III) reduction test. Environment Toxicol
Chem. 24: 869-876.
27.Thiele-Bruhn, S., and Beck, I.C. 2005. Effects of sulfonamide and tetracycline antibiotics on
soil microbial activity and microbial biomass. Chemosphere. 59: 457-465.
28.Wang, S., and Wang, H. 2015. Adsorption behavior of antibiotic in soil environment: A
critical review. Front. Environ. Sci. Eng. 9: 565-574.
29.Wegst-Uhrich, S.R., Navarro, D.A.G., Zimmerman, L., and Aga, D.S. 2014. Assessing
antibiotic sorption to soil: A literature review and new case studies on sulfonamides and
macrolides. Chem. Cent. J. 8: 5.
30.Wei, X., Wu, S.C., Nie, X.P., Yediler, A., and Wong, M.H. 2009. The effects of residual
tetracycline on soil enzymatic activities and plant growth. J. Environ. Sci. Health Part B.
44: 461-471.
31.Welp, G., and Brummer, G.W. 1995. Iron(III) reduction test. P 296-298, In: K. Alef and
P. Nannipieri (Eds.), Methods in Applied Soil Microbiology and Biochemistry. Academic,
London, UK.
32.Yu, V., Akimenko, K., Kazeev, Sh., and Kolesnikov, S.I. 2014. The impact of antibiotics
(benzylpenicillin, and nystatin) on the biological properties of ordinary Chernozems.
Eurasian Soil Sci. 47: 9. 910-916.
33.Zarfl, C., Klasmeier, J., and Matthies, M. 2009. A conceptual model describing the
fate of sulfadiazine and its metabolites observed in manure-amended soils. Chemosphere.
77: 720-726.