1.Dwivedi, N., Balomajumder, C., and Mondal, P. 2016. Comparative evaluation of cyanide removal by adsorption, biodegradation and simultaneous adsorption and biodegradation (SAB) process using Bacillus cereus and almond shell. J. Environ. Biol. 37: 4. 551-556.
2.Ebbs, S.D., Kosma, D.K., Nielson, E.H., Machingura, M., Baker, A.J., and Woodrow, I.E. 2010. Nitrogen supply and cyanide concentration influence the enrichment of nitrogen from cyanide in wheat (Triticum aestivum L.) and sorghum (Sorghum bicolor L.). Plant, cell & environment journal. 33: 7. 1152-1160.
3.Torbati, S. 2017. Feasibility Study on Phytoremediation of Malachite Green Dye from Contaminated Aqueous Solutions Using Watercress (Nasturtium Officinale). Iran. J. Health Environ.
9: 4. 503-516.
4.Piotrowska-Długosz, A. 2017. The Use of Enzymes in Bioremediation of Soil Xenobiotics. Xenobiotics in the Soil Environment. Pp: 243-265.
5.Ghasemi, R., and Mokhtari, R. 2013. Resistance to cyanide by salicylate pretreatment in Salix babylonica L. Theoretical and Experimental Plant Physiology. 25: 4. 275-282.
6.Hong, L., Banks, M., and Schwab, A. 2008. Removal of cyanide contaminants from rhizosphere soil. Bioremed. J.
12: 4210-215.
7.Rehman, H.M., Shah, Z.H., Nawaz, M.A., Ahmad, M.Q., Yang, S.H., and Kho, K.H. 2017. Beta-cyanoalanine synthase pathway as a homeostatic mechanism for cyanide detoxification as well as growth and development in higher plants. Planta.
Pp: 1-24.
8.Kumar, R., Saha, S., Dhaka, S., Kurade, M.B., Kang, C.U., and Baek, S.H. 2017. Remediation of cyanide-contaminated environments through microbes and plants: a review of current knowledge and future perspectives. Geosystem Engineering. 20: 1. 28-40.
9.Wachirawongsakorn, P., Jamnongkan,
T., and Latif, M.T. 2015. Removal of Cyanide-Contaminated Water by Vetiver Grasses. Modern Applied Science.
9: 13. 252-268.
10. Machingura, M., Salomon, E., Jez,
J.M., and Ebbs, S.D. 2016. The
β‐cyanoalanine synthase pathway: beyond cyanide detoxification. Plant, cell and environment. 39: 10. 2329-2341.
11. Trapp, S., and Christiansen, H. 2003. Phytoremediation of Cyanide‐Polluted Soils. Phytoremediation: transformation and control of contaminants. Pp: 829-862.
12. Dimitrova, T., Repmann, F., Raab, T., and Freese, D. 2015. Uptake of ferrocyanide in willow and poplar trees in a long term greenhouse experiment. Ecotoxicology. 24: 3. 497-510.
13. Yu, X.Z., Gu, J.D., and Liu, S.
2007. Biotransformation and metabolic response of cyanide in weeping willows. J. Hazard. Mater. 147: 3. 838-844.
14. Whankaew, S., Machingura, M., Rhanor, T., Triwitayakorn, K., and Ebbs, S. 2014. Interaction of cyanide uptake by sorghum and wheat with nitrogen supply. J. Soil Sci. Plant Nutr. 14: 2. 332-347.
15. Larsen, M., Trapp, S., and Pirandello, A. 2004. Removal of cyanide by woody plants. Chemosphere. 54: 3. 325-333.
16. Taebi, A., Jeirani, K., Mirlohi, A., and Zadeh Bafghi, A. 2008. Phytoremediation of cyanide-polluted soils by non-woody plants. J. Isfahan Univ. Technol.
11: 42. 515-523. (In Persian)
17. O'leary, B., Preston, G.M., and Sweetlove, L.J. 2014. Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis. Molecular plant. 7: 1. 231-243.