1.Andrade, S.A.L., Abreu, C.A., de Abreu, M.F., and Silveira, A.P.D. 2004. Influence of lead addition on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology. 26: 2. 123-131.
2.Audet, P., and Charest, C. 2006. Effects of AM colonization on ‘wild tobacco’ grown in zinc contaminated soil. Mycorrhiza. 16: 4. 277-283.
3.Barber, S.A. 1984. Soil Nutrient Bioavailability. A Mechanistic Approach. John Wiley and Sons, New York, USA. 398p.
4.Chen, X., Wu, C., Tang, J., and Hu, S. 2005. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere. 60: 5. 665-671.
5.Cottenie, A. 1980. Methods of Plant Analysis. In: Soil and Plant Testing. FAO Soils Bulletin, NO 38/2, Pp: 94-100.
6.de Andrade, S.A.L., da Silveira, A.P.D., Jorge, R.A., and de Abreu, M.F. 2008. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Inter. J. Phytoremed. 10: 1-13.
7.de Souza, L.A., de Andrade, S.A.L.,de Souza, S.C.R., and Schiavinato,M.A. 2012. Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiologiae Plantarum. 34: 2. 523-531.
8.Feddermann, N., Roger, F., Boller, T., and Elfstrand, M. 2010. Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecology. 3: 1-8.
9.Ferreira, A.S., Totola, M.R., Kasuya, M.C.M., Araujo, E.F., and Borges, A.C. 2005. Small heat shock proteins in the development of thermotolerance in Pisolithu ssp. J. Thermal Biol. 30: 8. 595-602.
10.Ferrol, N., Tamayo, E., and Vargas, P. 2016. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J. Exp. Bot. 67: 22. 6253-6265.
11.Gadkar, V., and Rillig, M.C. 2006. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiology Letters. 263: 93-101.
12.Garg, N., Singh, S., and Kashyap, L. 2017. Arbuscular mycorrhizal fungi and heavy metal tolerance in plants: An insight into physiological and molecular mechanisms. P 75-97, In: Varma, A., R. Prasad and N. Tuteja (eds.), Mycorrhiza-Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham, Switzerland.
13.Gaur, A., and Adholeya, A. 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science. 86: 528-534.
14.Giasson, P., Jaouich, A., Gagné, S., and Moutoglis, P. 2005. Phytoremediation of zinc and cadmium: A study of arbuscular mycorrhizal hyphae. Remediation. 15: 113-122.
15.Gil-Cardeza, M.L., Ferri, A., Cornejo, P., and Gomez, E. 2014. Distribution of chromium species in a Cr-polluted soil: presence of Cr(III) in glomalin related protein fraction. Science of the Total Environment. 493: 828-833.
16.Gohre, V., and Paszkowski, U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta. 223: 6. 1115-1122.
17.Gonzalez-Chavez, M.C., Carrillo-Gonzalez, R., Wright, S.F., and Nichols, K.A. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution. 130: 3. 317-323.
18.González-Guerrero, M., Melville, L.H., Ferrol, N., Lott, J.N.A., Azcón-Aguilar, C., and Peterson, R.L. 2008. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can. J. Microbiol. 54: 2. 103-10.
19.Gupta, D.K., Nicolosa, F.T., Schetinger, M.R.C., Rossato, L.V., Pereira, L.B., Castro, G.Y., Srivastava, S., and Tri- pathi, R.D. 2009. Antioxidant defense mechanism in hy- droponically grown Zea mays seedlings under moderate lead stress. J. Hazard. Mater. 172: 479-484.
20.Hall, J.L. 2002. Cellular mechanisms for heavy metal detoxification and toletance. J. Exp. Bot. 53: 366. 1-11.
21.Hammer, E.C., and Rillig, M.C. 2011. The Influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus- salinity increases glomalin content. PLoS One. 6: 12. 1-5.
22.Hildebrandt, U., Regvar, M., and Bothe, H. 2007. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry. 68: 1. 139-146.
23.Hutchinson, J.J., Young, S.D., Black, C.R., and West, H.M. 2004. Determining uptake of radio-labile soil cadmium by arbuscular mycorrhizal hyphae using isotopic dilution in a compartmented-pot system. New Phytologist. 164: 3. 477-484.
24.Jankong, P., and Visoottiviseth, P. 2008. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere. 72: 7. 1092-1097.
25.Janouskova, M., Pavlikova, D., Macek, T., and Vosatka, M. 2005. Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant and Soil. 272: 29-40.
26.Jansa, J., Finlay, R., Wallander, H., Smith, F.A., and Smith, S.E., 2011. Role of mycorrhizal symbioses in phosphorus cycling. In: Phosphorus in action. Soil Biology. Springer, Berlin, Heidelbe, Pp: 137-168.
27.Kabata-Pendias, A. 2011. Trace Elements in Soils and Plants, 4td ed. CRC Press/Taylor and Francis, Boca Raton, USA. 548p.
28.Kormanik, P.P., and McGraw, A.C. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots.
P 37-45, In: N.C. Schenck, (ed.), Methods and Principles of Mycorrhizal Research, American Phytopathological Society, Saint Paul, MN.
29.Liang, C., Li, T., Xiao, Y., Liu, M.L., Zhang, H.B. and Zhao, Z.W. 2009. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. Inter. J. Phytoremed. 11: 8. 692-703.
30.Lingua, G., Franchin, C., Todeschini, V., Castiglione, S., Biondi, S., Burlando, B., Parravicini, V., Torrigiani, P., and Berta, G. 2008. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environmental Pollution. 153: 137-147.
31.Lombi, E., Wenzel, W.W., Gobran, G.R., and Adriano, D.C. 2001. Dependency of metals on indigenous and induced rhizosphere processes: A review. P 3-24, In: G.R. Gobran, , W.W. Wenzel and E. Lombi (eds.), Trace Elements in the Rhizopshere. CRC Press, Boca Raton, Florida.
32.Lopez, M.L., Peralta-Videa, J.R., Castillo-Michel, H., Martinez-Martinez, A., Duarte-Gardea, M., and Gardea-Torresdey,
J.L. 2007. Lead toxicity in alfalfa plants exposed to phytohormones and ethylene diamine tetra acetic acid monitored by peroxidase, catalase and amylase activities. Environmental Toxicology and Chemistry. 26: 12. 2717-2723.
33.Millner, P.D., and Kitt, D.G. 1992. The Beltsville method for soilless production of vesicular arbuscular mycorrhizal fungi. Mycorrhiza. 2: 9-15.
34.Nayuki, K., Chen, B., Ohtomo, R., and Kuga, Y. 2014. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microbes and Environments. 29: 60-66.35.Nichols, K.A., and Wright, S.F. 2005. Comparison of glomalin and humic acid in eight native United State soils. Soil Science. 170: 12. 985-997.
36.Pawlowska, T.E., and Charvat, I. 2004. Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology. 70: 11. 6643-6649.
37.Peer, W., Baxter, I., Richards, E., Freeman, J., and Murphy, A. 2005. Phytoremediation and hyperaccumulator plants. 14: P 299-340, In: M. Tamas and E. Martinoia (eds.), Topics in Current Genetics, Molecular Biology of Metal Homeostasis and Detoxification. Springer, Berlin.
38.Pellegrino, E., and Bedini, S. 2014. Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biology and Biochemistry. 68: 429-439.
39.Pourmoradi, S., and Jafari, A.A. 2011. Evaluation of forage yield and quality traits in seven varieties of white clover grown in rangelands of Mazandaran province, Iran. Iran. J. Range Des. Res. 17: 4. 615-623. (In Persian) 40.Purin, S., and Rillig, M.C. 2008. Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. Soil Biology and Biochemistry. 40: 4. 1000-1003.
41.Rabie, G.H. 2005. Contribution of AM fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. Afric. J. Biotechnol. 4: 4. 332-345.
42.Rillig, M.C., and Steinberg, P.D. 2002. Glomalin production by an arbuscular mycorrhizal fungus, a mechanism of habitat modification? Soil Biology and Biochemistry. 34: 9. 1371-1374.
43.Rosier, C.L., Hoye, A.T., and Rillig, M.C. 2006. Glomalin-related soil protein: Assessment of current detection and qualification tools. Soil Biology and Biochemistry. 38: 8. 2205-2211.
44.Seregin, I.V., and Ivanov, V.B. 2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ. J. Plant Physiol. 48: 4. 523-544.
45.Sheikh-Assadi, M., Khandan-Mirkohi, A., Alemardan, A., and Moreno-Jiménez, E. 2015. Mycorrhizal Limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium. Inter. J. Phytoremed. 17: 6. 556-562.
46.Smith, S.E., and Read, D.J. 1997. Mycorrhizal symbiosis, 2nd ed. Academic Press, San Diego, California. 605p.
47.Soleimani, M., Akbar, S., and Hajabbasi, M.A. 2011. Enhancing Phytoremediation Efficiency in Response to Environmetal Pollution Stress. P 1-14, In: H.K.N., Vasanthaiah, and D.M. Kambiranda (eds.), Plants and Environment, In Tech-Open Access Publisher.
48.Subramanian, K.S., Balakrishnan, N., and Senthil, N. 2013. Mycorrhizal symbiosis to increase the grain micronutrient content in maize. Austr. J. Crop Sci. 7: 7. 900-910.
49.Sudova, R., and Vosatka, M. 2007. Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant and Soil. 296: 77-83.
50.Vaidya, G.S., Rillig, M.C., and Wallander, H. 2011. The role of glomalin in soil erosion. Scientific World. 9: 9. 82-85.
51.Vogel-Mikuš, K., Drobne, D., and Regvar, M. 2005. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution.133: 2. 233-242.
52.Waling, I., Vark, W.V., Houba, V.J.G., and Vanderlee, J.J. 1989. Soil and plant analysis, a series of syllabi: Part 7-
Plant Analysis Procedures. Wageningen Agricultural University, Netherlands.
53.Wang, F., Li, X., and Yin, R. 2005. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens
and the potential for phytoremediation of contaminated soil. Plant and Soil. 269: 225-232.
54.Wang, F.Y., Lin, X.G., and Yin,R. 2007. Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decrease Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia. 51:2. 99-109.
55.Wang, Z.H., Yuan, K., and Yang, L. 2013. Response of maize leaf proteins induced/modulated by AM mycorrhizal inoculation and (or) arsenic stress. China Agriculture Science. 46: 18. 3758-3767.
56.Wright, S.F., Franke-Snyder, M., Morton, J.B., and Upadhyaya, A.1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil. 181: 2. 193-203.
57.Wright, S.F., and Upadhyaya, A. 1996. Extraction of an abundant and unusual protein from soil and comparison
with hyphal protein from arbuscular mycorrhizal fungi. Soil Science.161: 575-586.
58.Wu, C., Chen, X., and Tang, J.2005. Lead accumulation in weed communities with various species. Communications in Soil Science and Plant Analysis. 36: 13-14. 1891-1902.
59.Wu, S., Zhang, X., Chen, B., Wu, Z.,Li, T., Hu, Y., Sun, Y., and Wang,Y. 2016. Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environmental and Experimental Botany. 122: 10-18.
60.Zhu, J., Zhang, C., and Lynch, J.P. 2010. The utility of phenotypic plasticity for root hair length for phosphorus acquisition. Functional Plant Biology. 37: 313-322.