1.Tajbakhsh, M., & Pourmirza, A. A. (2005). Cereal grain crops. West Azarbaijan Academic Jihad Publications, 315p. [In Persian]
3.Baran, A., Cayci, G., Kutak, C., & Hartmann, R. (2001). The effect of grape mare as growing medium on growth of hypostases plant. Bioresource Technology, 78, 103-106. doi: 10.1016/s0960-8524 (00)00171-1.
4.Mirhosseini, G., Alavimoghaddam, M. R., & Maknon, R. (2007). Investigation of Application of Tehran Municipal WWTPs’ Dried Sludge in Agriculture. Environment sciences, 4 (4), 47-56. [In Persian]. Corpus ID: 140173955.
5.Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Memon, A. R., Jalbani, N., & Shah, A. (2008). Use of sewage sludge after liming as fertilizer to maize growth.
Pedosphere, 18 (2), 203-213.
doi:10.1016/ S1002-0160(08)60008-9.
6.Jimenez-Cisneros, B. E., Maya-Rendon C., & Salgado-Velazquez, G. (2001). The elimination of helminth ova, faecal coliforms, salmonella and protorzoan cysts by various physicochemical processes in wastewater and sludge. Water Science and Technology, 43 (12), 179-182. PMID: 11464750.
7.Casado-vela, J., Selles, S., Dias-Crespo, C., Navarro-Pedreno, J., Mataix-Beneyto, J., & Grmez, I. (2007). Effect of composted sewage sludge application to soil on sweet pepper crop (capsicum annuum var. annuum) grown under two explotation regimes. Waste Management, 27, 1509-1518. doi: 10.1016/j.wasman. 2006.07.016.
9.Boostani, H. R., Chorom, M., Moezzi, A. A., & Enayatizamir, N. (2014). Mechanisms of plant growth promoting rhizobacteria (PGPR) and mycorrhizae fungi to enhancement of plant growth under salinity stress: a review. Scientific Journal of Biological Sciences, 3(11), 98-107. doi: 10.14196/sjbs.v3i11. 1262.
10.Smith, S. E., & Read, D. J. (2008). mycorrhizal symbiosis, third ed. Academic press, London VK. 487p.
11.Gupta, P. K. (2004). Soil, Plant, Water and Fertilizer Analysis. Agrobios (India), 438 p.
12.Schubler, A., & Walker, C. (2010). The Glomeromycota: A Species List with New Families and New Genera. Royal Botanic Garden Edinburgh, Kew, Botanische Staatssammlung Munich, and Oregon State University. 56p.
14.Cottenie, A. (1980). Soil and plant testing as a basis of fertilizer recommendations. FAO Soil’s Bulletin, 119p.
15.Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity.
Soil Biology and Biochemistry, 1 (4), 301-307.
doi:10.1016/0038-0717 (69)90012-1.
16.Alef, K. (1995). Soil Respiration. 214-215. In: K. Alef, & P., Nannipieri (Eds.). Methods in Soil Microbiology and Biochemistry, Academic Press Inc. San Diego.
17.Brookes, P. C. (1995). The Use of Microbial Parameters in Monitoring Soil Pollution by Heavy Metals. Biology and Fertility of Soils, 19 (4), 269-279. doi: 10.1007/BF00336094.
18.Hejazi Mehrizi, M., Shariatmadari, H., & Afyuni, M. (2013). Cumulative and Residual Effect of Sewage Sludge on Inorganic P Fractions and P Availability in a Calcareous Soil. Journal of science and technology of agriculture and natural resources.
Journal of water and soil science, 17 (64), 33-42. [In Persian].
doi: 20.1001.1.24763594.1392.17.64. 12.2.
19.Tawaraya, K. (2022). Response of mycorrhizal symbiosis to phosphorus and its application for sustainable crop production and remediation of environment.
Soil Science and Plant Nutrition, 68 (2), 241-245.
doi: 10. 1080/00380768.2022.2032335.
20.Turrion, M. B., Bueis, T., Lafuente, F., Lopez, O., San Jose, E., Eleftheriadis, A., & Mulas, R. (2018). Effects on soil phosphorus dynamics of municipal solid waste compost addition to a burnt and unburnt forest soil.
Science of the total environment, 642, 374-382.
doi:10. 1016/j.scitotenv.2018.06.051.
21.Fernandes, S. A. P., Bettiol, W., & Cerri, C. C. (2005). Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity
. Applied Soil Ecology, 30, 65-77.
doi.org/10.1016/j.apsoil.2004.03.008.
22.Oelmuller, R., Sherameti, I., Tripathi, S., & Varma, A. (2009). Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis, 49, 1-17. doi:10.1007/ s13199-009-0009-y.
23.Margalef, O., Sardans, J., Fernandez-Martínez, M., Molowny-Horas, R., Janssens, I. A., Ciais, P., Goll, D., Richter, A., Obersteiner, M., Asensio, D., & Penuelas, J. (2017). Global patterns of phosphatase activity in natural soils. Scientific Reports, 7 (1), 1-13. doi: 10.1038/s41598-017-01418-8.
24.Shahabifar, J., Panahpou, E., Moshiri, F., Gholami, A., & Mostashari, M. (2019). The Effect of Organic and Chemical Fertilizers on Phosphorus Uptake by Wheat (Triticum) and Soil Acidic and Alkaline Phosphatase Enzymes Activity. Applied Soil Research, 7 (3), 150-163. [In Persian]. doi: article_120747.html.
25.Mbarki, S., Labidi, N., Talbi, O., Jdidi, N., Abdelly, C., & Pascual, J. A. (2010). Ameliorative effect of municipal solid waste compost on the biological quality of mediterranean salt lake soil.
Compost Science & Utilization, 18 (4), 242-248.
doi.org/10.1080/1065657X.2010.10736962.
26.Acosta-Martinez, V., & Tabatabai, M. (2000). Enzyme activities in a limed agricultural soil.
Biology and Fertility Soils, 31, 85-91.
doi:10.1007/ s003740050628.
27.Spohn, M., & Kuzyakov, Y. (2013). Distribution of microbial-and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation–Coupling soil zymography with
14C imaging.
Soil Biology and Biochemistry, 67, 106-113.
doi.org/10.1016/j.soilbio.2013.08.015.
28.Sanjay, A., Sanjay, S., & Suri, B. (2017). Effect of soil biological properties on crop production. Soil Conservation Society of India. New Dehli. 256p.
29.Giannakis, G. V., Kourgialas, N. N., Paranychianakis, N. V., Nikolaidis, N. P., & Kalogerakis, N. (2014). Effects of municipal solid waste compost on soil properties and vegetables growth.
Compost science & utilization, 22 (3), 116-131.
doi:10.1080/1065657X. 2014.899938.
30.de Araujo, A. S., de Melo, W. J., & Singh, R. P. (2010). Municipal solid waste compost amendment in agricultural soil: changes in soil microbial biomass. Reviews in Environmental Science and Bio/ Technology, 9, 41–49. doi.org/10.1007/ s11157-009-9179-6.
31.Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., & Abdelly, C. 2009. Effectiveness of compost use in salt-affected soil.
Journal of Hazardous Materials, 171, 29-37.
doi: 10.1016/ j.jhazmat.2009.05.132.
32.Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J. O., Thies, F., Luizão, J., Petersen, J., & Neves. E. G. (2006). Black Carbon Increases Cation Exchange Capacity in Soils.
Soil Science Society of America Journal, 70, 1719-1730.
doi.org/10.2136/sssaj2005.0383.
33.Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., & Agnolucci, M. (2015). Arbuscular mycorrhizal fungi act as bio-stimulants in horticultural crops.
Scientia Horticalturae. 196, 91-108.
doi.org/ 10.1016/j.scienta.2015.09.002.
34.Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., & Wang, Z. (2017). Combined Inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology. 8, 25-16.
doi: 10.3389/fmicb.2017.02516.
35.Mitra, D., Navendra, U., Panneerselvam, U., Ansuman, S., Ganeshamurthy, A. N., & Divya, J. (2019). Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. International Journal of Life Sciences and Applied Sciences, 1, 1-10. https://www.academia.edu/38644027.
36.Oburger, E., Jones, D. L., & Wenzel, W. W. (2011). Phosphorus saturation and pH differentially regulate the efficiency of organic acid anionmediated P solubilization mechanisms in soil. Plant and Soil, 341, 363-382. doi.org/10.1007/s11104-010-0650-5.
38.Wu, M., Wei, Q., Xu, L., Li, H., Oelmüller, R., & Zhang, W. (2018). Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant and Soil, 432 (1-2), 333-344. doi.org/10.1007/s11104-018-3795-2.
39.Mensah, R. A., Li, D., Liu, F., Tian, N., Sun, X., Hao, X., Lai, Z., & Cheng, C. (2020). Versatile Piriformospora indica and its potential applications in horticultural crops.
Horticultural Plant Journal, 6 (2), 111-121.
doi.org/10. 1016/j.hpj.2020.01.002.
40.Khademian, R., Asghari, B., Sedaghati, B., & Yaghoubian, Y. (2019). Plant beneficial rhizospheric microorganisms (PBRMs) mitigate deleterious effects of salinity in sesame (
Sesamum indicum L.): Physio-biochemical properties, fatty acids composition and secondary metabolites content.
Industrial Crops and Products, 136, 129-139.
doi.org/ 10.1016/j.indcrop.2019.05.002.
41.Aslani, Z., Hedayati, A., Hassani, A., & Barin, M. (2022). Effects of inoculation with
Piriformospora indica on some vegetative, physiological, and biochemical parameters and essential oil content of
Origanum vulgare L. ssp. Vulgare.
Iranian Journal of Medicinal and Aromatic Plants Research, 38 (2), 253-265. [In Persian].
doi.org/10.22092/ ijmapr. 2022.357580.3128.
42.Muchuweti, M., Birkett, J. W., Chinyanga, E., Zvauya, R., Scrimshaw, M. D., & Lester, J. N. (2006). Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: implications for human health.
Agriculture, Ecosystems and Environment, 112, 41-48.
doi.org/ 10.1016/j.agee.2005.04.028.
43.Sayın, F. E., Khalvati, M. A., & Erdinçler, A. (2019). Effects of Sewage Sludge Application and Arbuscular Mycorrhizal Fungi (G. mosseae and G. intraradices) Interactions on the Heavy Metal. Corpus ID: 202633262.
44.Liu, A., Hamel, C., Hamilton, R. I., Ma, B. L., & Smith, D. L. (2000). Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza, 9 (6), 331-336. doi.org/10.1007/s005720050277.
45.Achatz, B., von Rüden, S., Andrade, D., Neumann, E., Pons-Kuhnemann, J., Kogel, K. H., Franken, P., and Waller, F. (2010). Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant and soil, 333(1), 59-70. doi.org/10.1007/s11104-010-0319-0.