1.Najafi, N., Ahmadinezhad, R., Aliasgharzad, N., & Oustan, Sh. (2019). Effects of urea integration with manure and two types of compost (municipal waste and sewage sludge) on concentrations of micronutrients and sodium in wheat leaf, stem and seed. Journal of Water and Soil Conservation, 26, 1-27. [In Persian]. doi.org/10.22069/ JWSC.2019.15712.3091.
2.Wiesler, F., Hund-Rinke, K., Gäth, S., George, E., Greef, J. M., Hölzle, L. E., Holz, F., Hülsbergen, K. J., Pfeil, R., Severin, K., Frede, H. G, Blum, B., Schenkel, H., Horst, W., Dittert, K., Ebertseder, T., Osterburg, B., Philipp, W., Pietsch, M., & Nessel, T. (2016). Use of organic fertilizers and organic wastes in agriculture. Berichte über Landwirtschaft, 94 (1), 1-14. doi.org/10.12767/buel. v94i1.124.g251.
3.Sarlaki, E., Sokhandan Toomaj, M., Sharif Paghaleh, A., Kianmehr, M., & Nikousefat, O. (2019). Extraction of humic acid from lignite coals using stirred tank reactors (STRs): Assessment of process parameters and final product characterization. Iranian Journal of Soil and Water Research, 50, 1111-1125. [In Persian]. doi.org/10.22059/IJSWR. 2018.260201.667947.
4.Yang, X., Kong, Y., Guo, E., Chen, X., & Li, L. (2021). Organic acid regulation of inorganic phosphorus release from Mollisols with different organic matter contents. Soil Use and Management. 38, 576-583. doi.org/10.1111/sum.12710.
5.Gerke, J. (2018). Concepts and misconceptions of humic substances as the stable part of soil organic matter: a review. Agronomy, 8: 76 p. doi.org/10. 3390/agronomy8050076.
6.Rose, M. T., Patti, A. F., Little, K. R., Brown, A. L., Jackson, W. R., & Cavagnaro, T. R. (2014). A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Advances in Agronomy, 124, 37-89. doi.org/10.1016/B978-0-12-800138-7.00002-4.
7.Shahbazi, S., Fateh, E., & Aynehband, A. (2015). Evaluation of the effect of humic acid and vermicompost on yield and yield components of three wheat cultivars in tropical regions. Plant Productions, 38, 99-110. [In Persian]. doi.org/ 10. 22055/ppd.2015.11323.
8.De Melo, B. A. G., Motta, F. L., & Santana, M. H. A. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering, 62, 967-974. doi.org/ 10.1016/j.msec.2015.12.001.
9.Ampong, K., Thilakaranthna, M. S., & Gorim, L. Y. (2022). Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, 4(10), 1-14. doi.org/10.3389/ fagro.2022. 848621.
10.Sible, C. N., Seebauer, J. R., & Below, F. E. (2021). Plant biostimulants: A categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy, 11, 1297 p. doi.org/10.3390/agronomy11071297.
11.Zhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Science of the Total Environment. 612, 522-537. doi.org/10.1016/j.scitotenv.2017.08.095.
12.Sharma, S., Kumar, V., & Tripathi, R. B. (2011). Isolation of phosphate solubilizing microorganisms (PSMs) from soil. Journal of microbiology and Biotechnology Research, 1, 90-95.
13.Brown, M. E., Hintermann, B., & Higgins, N. (2009). Markets, climate change, and food security in West Africa. Environmental Science and Technology, 43, 8016-8020. doi.org/ 10.1021/es901162d.
14.Goldani, M., Rezvani Moghaddam, P., Nasiri mahalati, M., & Kafi, M. (2011). Response of hybrids of maize (Zea may L.) to density in the five phenological stages. Iranian Journal of Field Crops Research, 9, 139-150. [In Persian]. doi.org/10.22067/GSC.V9I2.10985.
15.García, A. C., van Tol de Castro, T. A., Santos, L. A., Tavares, O. C. H., Castro, R. N., Berbara, R. L. L., & García‐Mina, J. M. (2019). Structure–property–function relationship of humic substances in modulating the root growth of plants: A review. Journal of Environmental Quality, 48, 1622-1632. doi.org/10.2134/jeq2019.01.0027.
16.Nardi, S., Ertani, A., & Francioso, O. (2017). Soil-root cross-talking: the role of humic substances. Journal of Plant Nutrition and Soil Science, 180, 5-13. doi.org/10.1002/jpln.201600348.
17.Amir, S., Benlboukht, F., Cancian, N., Winterton, P., & Hafidi, M. (2008). Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting. Journal of Hazardous Materials, 160, 448-455. doi.org/10.1016/j.jhazmat.2008.03.017.
18.Piccolo, A., Nardi, S., & Concheri, G. (1992). Structural characteristics of humic substances as related to nitrate uptake and growth regulation in plant systems. Soil Biology and Biochemistry, 24, 373-380. doi.org/10.1016/0038-0717(92)90197-6.
19.Hosseini, S., Hejazi-Mehrizi, M., Sarcheshmehpour, M., & Fekri, M. (2022). Comparison of the characteristics and effects of commercial humic acid extracted from cattle and sheep manures on soybean growth. Iranian Journal of Soil Research,
36, 289-304. [In Persian]. doi.org/10. 22092/IJSR.2022.358279.658.
20.Ebrahimi, Z., Sarcheshmehpour, M., & Hejazi Mehrizi, M. (2016). The effects of humic substances and mycorrhiza fungus on Fe and Zn uptake and some soybean growth characteristics under greenhouse conditions. Journal of Soil and Plant Interactions, 10, 7(1), 99-110. [In Persian]. doi.org/10.18869/ acadpub. ejgcst.7.1.99.
21.Fan, H. M., Wang, X. W., Sun, X., Li, Y. Y., Sun, X. Z., & Zheng, C. S. (2014). Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum. Scientia Horticulturae, 177, 118-123. doi.org/10.1016/j.scienta. 2014.05.010.
22.Nasiroleslami, E., Mozafari, H., Sadeghi-Shoae, M., Habibi, D., & Sani, B. (2021). Changes in yield, protein, minerals, and fatty acid profile of wheat (Triticum aestivum L.) under fertilizer management involving application of nitrogen, humic acid, and seaweed extract. Journal of Soil Science and Plant Nutrition, 21, 2642-2651. doi.org/10.1007/s42729-021-00552-7.
23.Maji, D., Misra, P., Singh, S., & Kalra, A. (2017). Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Applied Soil Ecology, 110, 97-108. doi.org/10. 1016/j.apsoil.2016.10.008.
24.Arjumend, T., Abbasi, M. K., & Rafique, E. (2015). Effects of lignite-derived Humic acid on some selected soil properties, growth, and nutrient uptake of wheat (Triticum Aestivum L.) grown under greenhouse conditions. Pakistan Journal of Botany, 47, 2231-2238.
25.Arancon, N. Q., Edwards, C. A., Lee, S., & Byrne, R. (2006). Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology, 42, 65-69. doi.org/10.1016/ j.ejsobi.2006.06.004.
26.Hamad, M. M., & Tantawy, M. F. A. (2018). Effect of different humic acids sources on the plant growth, calcium and iron utilization by sorghum. Egyptian Journal of Soil. Science, 58, 291-307. doi.org/10.21608/EJSS.2018.3559. 1173.
27.Swift, R. S. 1996. Organic matter characterization. p.1018-1020. In: D. L. Sparks et al. (ed.). Methods of Soil Analysis, Agron, Part 3: Chemical Methods. American Society. Agronomy. Madison WI, USA. doi.org/10.2136/ sssabookser5.3.c35.
28.Taghipour, M., & Jalali, M. (2013). Effect of low-molecular-weight organic acids on kinetics release and fractionation of phosphorus in some calcareous soils of western Iran. Environmental Monitoring and Assessment, 185, 5471-5482. doi.org/ 10.1007/s10661-012-2960-y.
29.Hejazi-Mehrizi, M., Sarcheshmehpour, M., & Ebrahimi, Z. (2015). The effects of some humic substances and vermicompost on phosphorus transformation rate and forms in a calcareous soil. Journal of Soil Science and Plant Nutrition. 15, 249-260. doi.org/10.4067/S0718.95162015005000020.
30.Braos, L. B., Cruz, M. C. P. D., Ferreira, M. E., & Kuhnen, F. (2015). Frações do fósforo orgânico em solo adubado com esterco bovino. Revista Brasileira de Ciência do Solo, 39, 140-150. doi.org/ 10.1590/01000683rbcs20150137.
31.Tunesi, S., Poggi, V., & Gessa, C. (1999). Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals. Nutrient Cycling Agroecosystem, 53, 219-227. doi.org/ 10.1023/A:1009709005147.