1.Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W., Vitousek, P. M., & Zhang, F. S. (2010). Significant acidification in major Chinese croplands.
Science. 327, 1008-1010.
DOI: 10.1126/ science.1182570.
2.Von Uexkull, H. R., & Mutert, E. (1995). Global extent, development and economic impact of acid soils. Plant & Soil, 171, 1-15. https://doi.org/10.1007/ BF00009558.
3.Shahbazi, K., & Besharati, H. (2013). Overview of Agricultural Soil Fertility Status of Iran. Land Management Journal, 1 (1), 1-15. doi: 10.22092/ lmj.2013.100072. [In Persian]
4.Huang, Y. M., Kang, R. H., Mulder, J., Zhang, T., & Duan, L. (2015). Nitrogen saturation, soil acidification, and ecological effects in a subtropical pine forest on acid soil in southwest China.
Journal of Geophysical Research,
120, 2457-2472.
https://doi.org/ 10.1002/2015JG003048.
5.Weil, R. R., & Brady, N. C. (2017) The Nature and Properties of Soils. 15th Edition, Pearson, New York. 1086p. ISBN: 978-0-13-325448-8.
6.Ch’ng, H. Y., Sanusi, S., & Othman, S. B. (2020).
Effect of Christmas Island rock phosphate and rice straw compost application on soil phosphorus availability and maize (
Zea mays L.) growth in a tropical acid soil of Kelantan, Malaysia.
Open Agriculture, 5, 150-158.
https://doi.org/10.1515/ opag-2020-0015.
7.Bang-Andreasen, T., Nielsen, J. T., Voriskova, J., Heise, J., Rønn, R., Kjøller, R., & Jacobsen, C. S. (2017). Wood ash induced pH changes strongly affect soil bacterial numbers and community composition.
Frontiers in Microbiology, 8, 271559.
https://doi.org/ 10.3389/fmicb.2017.01400.
8.Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition.
Soil Use & Management,
27, 205–212.
https://doi.org/ 10.1111/ j.1475-2743.2011.00340.x.
12.Nweke, I. A., Mbah, C. N., Oweremadu, E. O., Dambaba, N., Orji, E. C., Ekesiobi, A. I., & Nnabuife, E. L. C. (2017). Soil pH, available P of an Ultisol and castor performance as influenced
by contrasting tillage methods and
wood ash. African Journal of Agriculture Research, 12, 606-616. http://www.academicjournals.org/AJAR.
13.DeLuca, T. H., & Aplet, G. H. (2008). Charcoal and carbon storage in forest soils of the Rocky Mountain.
Frontiers in Ecology & the Environment, 6 (1), 18-24.
https://doi.org/ 10.1890/ 070070.
14.Scheepers, G. P., & du Toit, B. (2016). Potential use of wood ash in South African forestry: a review. Southern Forests: A Journal of Forest Science, 78 (4), 255-266. https://doi.org/ 10.2989/20702620.2016.1230716.
15.Fernandez-Delgado Juarez, M., Fabiani, G., Mazzier, T., Schonegger, D., Pietramellara, G., Gomez-Brandon, M., & Insam, H. (2020). Reclamation of acid soils with biomass ashes from pyrolytic wood liquefaction. Waste & Biomass Valorization, 11 (9), 5067-5078. https://doi.org/10.1007/s12649-019-00 789-5.
16.Ludwig, B., Rumpf, S., Mindrup, M., Meiwes, K. J., & Khanna, P. K. (2002). Effects of lime and wood ash on soil-solution chemistry, soil chemistry and nutritional status of a pine stand in Northern Germany. Scandinavian Journal of Forest Research, 17, 225-237. https://doi.org/10.1080/028275802753742891.
17.Lupwayi, N. Z., Arshad, M. A., Azooz, R. H., & Soon, Y. K. (2009). Soil microbial response to wood ash or lime applied to annual crops and perennial grass in an acid soil of northwestern Alberta.
Canadian Journal of Soil Science,
89, 169-177.
https://doi.org/ 10.4141/CJSS08007.
18.Gering, C., Heil, B., & Lamersdorf,
N. P. (2000). Wood ash application in a Norway spruce forest at Solling, Central Germany. Proceedings of International Conference on Forest Ecosystem Restoration, Vienna. pp: 322-324.
21.Masto, R. E., Ansari, M. A., George, J., Selvi, V. A., & Ram, L. C. (2013). Coapplication of biochar and lignite fly ash on soil nutrients and biological parameters at different crop growth stages of Zea mays.
Ecological Engineering, 58, 314-322.
https://doi.org/10.1016/ j.ecoleng.2013.07.011.
22.Joseph, R., Diochon, A., Morris, D., Venier, L., Emilson, C. E., Basiliko, N., ... & Hazlett, P. (2022). Limited effect
of wood ash application on soil quality as indicated by a multisite assessment
of soil organic matter attributes.
GCB Bioenergy, 14 (5), 500-521.
https://doi.org/10.1111/gcbb.12928.
23.Hansen, M., Saarsalmi, A., & Peltre, C. (2016). Changes in SOM composition and stability to microbial degradation over time in response to wood chip
ash fertilisation.
Soil Biology & Biochemistry, 99, 179-186.
https://doi. org/10.1016/j.soilbio.2016.05.012.
24.Sarkar, D. (2005). Physical and Chemical Methods in Soil Analysis. New Age International. 193p.
25.Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science,
37, 29-38.
26.Gee, G. W., & Bauder, J. W. (1986). Particle‐size analysis. p. 383-409. In: A. L. Page (Ed.). Methods of soil Analysis, Agron. No. 9, Part 1 Physical and Mineralogical Methods, American Society. Agronomy. Madison WI, USA.
27.Anderson, T. H., & Domsch, A. K. (1993). The metabolic quotient for CO
2 (qCO
2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils.
Soil Biology
& Biochemistry, 25, 393-395.
DOI: 10.1016/0038-0717(93)90140-7.
28.Jenkinson, D. S., & Ladd, J. N. (1981). Microbial biomass in soil: measurement and turnover. P. 415-471. In: E. A.
Paul, (Ed.). Soil biochemistry. Vol. 9. CRC Press.
29.Anderson, T. H., & Domsch, K. H. (1990). Application of eco-physiological quotients (qCO
2 and qD) on microbial biomasses from soils of different cropping histories.
Soil Biology & Biochemistry, 22, 251-255.
https:// doi. org/10.1016/0038-0717(90)90094-G.
30.Ananthacumaraswamy, S., & Baker,
R. M. (1991). Effect of increasing level of lime (CaCO3) on soil chemical properties of acid soils. Sri Lanka Journal of Tea Science, 60 (1), 4-15.
31.Levula, T., Saarsalmi, A., & Rantavaara, A. (2000). Effects of ash fertilization and prescribed burning on macronutrient, heavy metal, sulphur and
137Cs concentrations in lingonberries (Vaccinium vitis idaea).
Forest Ecology & Management, 126, 269-279.
https:// doi.org/10.1016/S0378-1127(99)00110-3.
32.Saunders, O. (2018). Guide to Using Wood Ash as an Agricultural Soil Amendment. University of New Hampshire Cooperative. 5p.
33.Hytonen, J. (2003). Effects of wood, peat and coal ash fertilization on Scots pine foliar nutrient concentrations and growth on afforested former agricultural peat soils. Silva Fennica, 37 (2), 219-234.
34.Ameyu, T. (2019). A review on the potential effect of lime on soil properties and crop productivity improvements. Journal of Environment & Earth Science, 9 (2), 17-23. DOI: 10.7176/ JEES.
35.Sanches, G. M., Magalhães, P. S., Remacre, A. Z., & Franco, H. C. (2018). Potential of apparent soil electrical conductivity to describe the soil pH and improve lime application in a clayey soil.
Soil and Tillage Research,
175, 217-225.
https://doi.org/10.1016/ j.still.2017.09.010.
36.Rao, S. M., & Shivananda, P. (2005). Role of curing temperature in progress of lime-soil reactions. Geotechnical & Geological Engineering, 23, 79-85. https://doi.org/ 10.1007/ s10706-003-3157-5.
37.Farhangi, M. B., Safari Sinegani, A. A., Mosaddeghi, M. R., Unc, A., & Khodakaramian, G. (2013). Impact of calcium carbonate and temperature on survival of Escherichia coli in soil.
Journal of Environmental Management, 119, 13-19.
https://doi.org/10.1016/ j.jenvman.2013.01.022.
38.Karer, J., Wimmer, B., Zehetner, F., Kloss, S. & Soja, G. (2013). Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions. Agricultural & food science, 22, 390-403. https://doi.org/ 10.23986/afsci.8155.
40.Mbah, C. N., Nwite, J. N., Njoku, C., & Nweke, I. A. (2010). Response of maize (Zea mays L.) to different rates of
wood-ash application in acid ultisol in Southeast Niger. African Journal of Agricultural Research, 5, 580-583. http://www.academicjournals.org/AJAR.
41.Fritze, H., Perkiomaki, J., Saarela, U., Katainen, R., Tikka, P., Yrjala, K., Karp, M., Haimi, J., & Romantschuk, M. (2000). Effect of Cd-containing wood ash on the microflora of coniferous forest humus.
FEMS Microbiology Ecology, 32, 43-51.
https://doi.org/ 10.1111/j.1574-6941.2000.tb00697.x.
42.Ventura, M., Panzacchi, P., Muzzi, E., Magnani, F., & Tonon, G. (2019). Carbon balance and soil carbon input in a poplar short rotation coppice plantation as affected by nitrogen and wood ash application. New Forests, 50(6), 969-990. https://doi.org/10.1007/ s11056-019-09709-w.
43.Gömöryová, E., Tóthová, S., Pichler, V., Homolák, M., Kriššák, V., & Gömöry, D. (2016). Wood ash effect on chemical and microbio-logical properties of topsoil in a Norway spruce stand
one year after the treatment. Folia Oecologica, 43, 156-163.
44.Hannam, K. D., Fleming, R. L., Venier, L., & Hazlett, P. W. (2019). Can bioenergy ash applications emulate the effects ofwildfire on upland forest soil chemical properties?
Soil Science Society of America Journal, 83, 201-217.
https:// doi.org/ 10.2136/ sssaj2018.10. 0380.
46.Munoz, C., Torres, P., Alvear, M., & Zagal, E. (2012). Physical protection of C and greenhouse gas emissions provided by soil macroaggregates from a Chilean cultivated volcanic soil. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 62 (8), 739-748. https://doi.org/10.1080/09064710.2012.700317.
47.Briedis, C., de Moraes Sa, J. C., Caires, E. F., de Fatima Navarro, J., Inagaki, T. M., Boer, A., de Oliveira Ferreira, A., Neto, C. Q., Canalli, L. B., & dos Santos, J. B. (2012). Changes in organic matter pools and increases in carbon sequestration in response to surface liming in an Oxisol under long‐term no‐till.
Soil Science Society of America Journal, 76, 151-160.
https://doi.org/ 10.2136/sssaj2011.0128.
48.Ekenler, M., & Tabatabai, M. A. (2003). Efects of liming and tillage systems on microbial biomass and glycosidases in soils. Biology & Fertility of Soils,
39, 51-61. https://doi.org/10.1007/ s00374-003-0664-8.
49.Hati, K. M., Swarup, A., Mishra, B., Manna, M., Wanjari, R., Mandal, K., & Misra, A. (2008). Impact of long-term application of fertilizer, manure and lime under intensive cropping on physical properties and organic
carbon content of an Alfisol.
Geoderma, 148, 173-179.
https://doi.org/10.1016/ j.geoderma.2008.09.015.
52.Neale, S. P., Shah, Z., & Adams, W. A. (1997). Changes in microbial biomass and nitrogen turnover in acidic organic soils following liming.
Soil Biology & Biochemistry, 29, 1463-1474.
https:// doi.org/10.1016/S0038-0717(97)00040-0.
53.Fuentes, J. P., Bezdicek, D. F., Flury, M., Albrecht, S., & Smith, J. L. (2006). Microbial activity affected by lime in a long-term no-till soil.
Soil & Tillage Research, 88 (1-2), 123-131.
https:// doi.org/10.1016/j.still.2005.05.001.
54.Moscatelli, M., Di Tizio, A., Marinari, S., & Grego, S. (2007). Microbial indicators related to soil carbon in Mediterranean land use systems.
Soil & Tillage Research, 97 (1), 51-59.
https:// doi.org/10.1016/j.still.2007.08.007.
57.Six, J., Frey, S., Thiet, R., & Batten,
K. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems.
Soil Science Society of America Journal, 70 (2), 555-569.
https://doi.org/10.2136/sssaj2004.0347.
58.Xue, D., Huang, X., Yao, H., & Huang, C. (2010). Effect of lime application on microbial community in acidic tea orchard soils in comparison with
those in wasteland and forest soils.
Journal of Environmental Sciences,
22 (8), 1253-1260.
https://doi.org/ 10.1016/S1001-0742(09)60246-1.
59.Grisso, R. D., Alley, M. M., Holshouser, D. L., & Thomason, W. E. (2005). Precision farming tools. soil electrical conductivity. Virginia Cooperative Extension, 6p.
http://hdl.handle.net/ 10919/51377.
60.Leifeld, J., Bassin, S., Conen, F., Hajdas, I., Egli, M., & Fuher, J. (2013). Control of soil pH on turnover of belowground organic matter in subalpine grassland. Biogeochemistry, 112, 59-69. https:// doi.org/10.1007/s10533-011-9689-5.
61.Tonon, G., Sohi, S., Francioso, O., Ferrari, E., Montecchio, D., Gioacchini, P., Ciavatta, C., Panzacchi, P., & Powlson, D. (2010). Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK. European Journal of Soil Science, 61 (6), 970-979. https://doi.org/10.1111/j.1365-2389.2010. 01310.x
62.Pascual, J. A., Garcia, C., Hernandez, T., & Ayuso, M. (1997). Changes in the microbial activity of an arid soil amended with urban organic wastes. Biology and Fertility of Soils, 24, 429-434. https://doi.org/10.1007/s003740050268.