1.Beulke, S., Benium, W., Brown, C. D., Mitchell, M., & Alker, A. (2005). Evaluation of simplifying assumptions on pesticide degradation in soil. Journal of Environmental Quality, 34 (6), 1933-1943. doi.org/10.2134/jeq2004.0460.
2.Izadi Darbandi, E. (2016). A review of the fate of herbicides and their sustainability in agricultural ecosystems.
science and management, the 7
th Iran Weed Science Conference. 21p.
url: https://conference.areeo.ac.ir. [In Persian]
3.Khodadadi, M., Samadi, M. T., Rahmani, A. R., Maleki, R., Allahresani, A., & Shahidi, R. (2010). Determination of organophosphorous and carbamat pesticides residue in drinking water resources of Hamadan in 2007.
Iranian Journal of Health and Environment, 2 (4), 250-257.
url: https://api. semanticscholar.org/CorpusID:56346205. [In Persian]
4.ElSayed, E. M., & Prasher, S. O. (2013). Effect of the presence of nonionic surfactant Brij35 on the mobility of metribuzin in soil. Journal of Applied Science, 3 (2), 469-489. doi.org/10. 3390/app3020469.
5.Tandon, S., & Singh, A. (2022). Residue Behavior of Clopyralid Herbicide in Soil and Sugar Beet Crop under Subtropical Field Conditions. Journal of food protection, 85 (5), 735-739. doi.org/ 10. 4315/JFP-21-355.
6.Schütz, H., Vedder, R., Düring, A., Weissbecker, B., & Hummel, H. E. (1996). Analysis of the herbicide clopyralid in cultivated soils Author links open overlay panels. Journal of Chromatography A, 754, 265-271. doi. org/10.1016/S0021-9673(96)00156-2.
7.Bergstrom, L., McGibbon, A., Day, S., & Snel, M. (1991). Leaching potential and decomposition of clopyralid in Swedish soils under field conditions. Environmental Toxicology and Chemistry, 10 (5), 563-571. doi.org/10.1002/etc. 5620100502.
8.Bukun, B., Shaner, D. L., Nissen, S. J., Westra, P., & Brunk, G. (2010). Comparison of the Interactions of Aminopyralid vs. Clopyralid with Soil.
Weed Science, 58 (4), 473-477.
url: http//www.jstor.org/stable/40891264.
9.Sakaliene, o., Rice, P. J., Koskinen, W. C., & Blazauskiene, G. (2011). Dissipation and Transport of Clopyralid in Soil: Effect of Application Strategies. Journal of Agricultural and Food Chemistry, 59, 7891-7895. doi.org/10. 1021/jf2012503.
10.Bovey, R. W., & Richardson, C. W. (1991). Dissipation of clopyralid and picloram in soil and seep flow in the Blacklands of Texas. Journal of Environmental Quality, 20, 528-531. doi.org/10.2134/jeq1991.00472425002000030005x.
11.Cox, L., Walker, A., Hermosin, M. C., & Cornejo, J. (1996). Measurement and simulation of the movement of thiazafluron, clopyralid and metamitron in soil columns. Weed Research, 5, 419-429. doi.org/10.1111/ j.1365_ 3180.1996.tb01671.x.
12.Pik, A. J., Peake, E., Strosher, M. T., & Hodgson, G. W. (1977). Fate of 3,6-dichloropicolinic acid in soils. Journal of agricultural and food chemistry, 25 (5), 1054-1061. doi.org/ 10.1021/jf60213a011.
13.Ahmad, R., James, T. K., Rahman, A., & Patrick, T. (2003). Dissipation of the Herbicide Clopyralid in an Allophanic Soil: Laboratory and Field Studies. Journal of Environmental Science and Health, Part B, 38 (6), 683-695. doi.org/ 10.1081/PFC-1200255531.
14.Singh, A., Tandon, S., & Sand, N. K. (2009). HPLC Determination of Herbicide Clopyralid in Soil and Water. Pesticide Research Journal, 21 (2), 187-190. url: https:// www.indianjournals.com.
15.Helling, C. S. (2005). The science of soil residual herbicides. Meeting Abstract. P. 3-22 in R.C. Van Acker, ed. Topics in Canadian Weed Science, Vol. 3, Sainte-Anne-de-Bellevue, Quebec: Canadian Weed Science Society. 125 p. url: https://www.ars.usda.gov.
16.Shaner, D. L., & Henry, W. B. (2007). Field history and dissipation of atrazine and metolachlor in Colorado. Journal of environmental quality, 36 (1), 128-134. doi.org/10.2134/jeq2006.0160.
17.Roberts, T. R. (1996). Assessing the fate of agrochemicals. Journal of Environmental Science and Health, Part B, 31 (3), 325-335, doi.org/10. 1080/03601239609372993.
18.Muller, K., Magesan, G. N., & Bolan, N. S. (2007). A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agriculture, Ecosystems and Environment. 120, 93-116. doi.org/10.1016/j.agee. 2006.08.016.
19.Gustafson, D. I. (1989). Groundwater ubiquity score: A Simple Method for Assessing Pesticide Leachability Environmental. Journal of Environmental Toxicology and Chemistry, 8, 339-357. doi.org/10.1002/etc. 56200 80411.
20.Jury, W., Focht, A., Dennis, D., Farmer, A., & Walter, J. (1987). Evaluation of pesticide groundwater pollution potential from standard indexes of soil-chemical adsorption and Biodegradation. Journal of Environmental Quality.
16 (4), 422-428. doi.org/10.2134/jeq 1987.00472425001600040022x.
21.Izadi, E., Rashed Mohassel, M. H., Zand, E., Nassiri mohalati, M., & Lakzian, A. (2008). Evaluation of Soil Texture and Organic Matter on Atrazine Degradation. Environmental Sciences, 5 (4), 53-64. url:https://envs.sbu.ac.ir/ article_96870.html. [In Persian]
22.Itoh, K., Ikushima, T., Suyama, K., & Yamamato, H. (2003). Evaluation of pesticide effects on microbial comunities in a paddy soil comparing with that caused by soil flooding. Journal of Pesticide Science, 28, 51-54. doi.org/10.1584/jpestics.28.51.
23.Moorman, T. B., Cowan, J. K., Arthur, E. L., & Coats, J. R. (2001). Organic amendment to enhance herbicide biodegradation in contaminated soils. Biology and Fertility of Soils, 33, 541-545. doi.org/10.1007/ s003740100367.
24.Zhao, P., Wang, L., Chen, L., & Pan, C. (2011). Residue dynamics of clopyralid and picloram in rape plant rapeseed
and field soil. Bull. Environ. Contam. Toxicol. 86 (1), 78-82. doi.org/10.1007/ s00128-010-0184-9.
25.Abdollahi, K., Movahedi Naeini, S. A. R., Barani Motlagh, M., & Roshani, Gh. (2019). Evaluation the risk potential diagram of underground water pollution caused by pesticides using biochar. PhD thesis, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. [In Persian]