1.Latifi, N., Eisazadeh, A., Marto, A., & Meehan, C. L. (2017). Tropical residual soil stabilization: A powder form material for increasing soil strength.
Construction and Building Materials, 147, 827-836.
doi.org/10.1016/j.conbuildmat.2017.04.115.
2.Behnam, H., Farrokhian Firouzi, A., & Moezzi, A. (2016). Effect of sugarcane bagasse biochar and compost on some soil mechanical properties.
Journal of Water and Soil Conservation, 4, 235-250.
doi. 10.22069/jwfst.2016.9777.2407. [In Persian]
3.Zare, S., Mohammadi, J., Mombeni, M., Shokouhi, R., & Qouhestani, Q. (2020). The effect of different soil coverings on some Physical and mechanical properties of eolian sediments.
Destruction and restoration of natural lands, 1, 105-119.
doi:20.1001.1.27174425.1399.1.1.11.0. [In Persian]
6.Orts, W. J., Sojka, R. E., & Glenn, G. M. (2000). Biopolymer additives to reduce erosion-induced soil losses during irrigation.
Industrial Crops and Products, 11 (1), 19-29.
doi.org/10.1016/S0926-6690(99)00030-8.
7.Hataf, N., Ghadir, P., & Ranjbar, N. (2018). Investigation of soil stabilization using chitosan biopolymer. Journal of cleaner production, 170, 1493-1500. doi.org/10.1016/j.jclepro.2017.09.256.
8.Shariatmadari, N., Reza, M., Tasuji, A., Ghadir, P., & Javadi, A. A. (2020). Experimental study on the effect of chitosan biopolymer on sandy soil stabilization.
In E3S Web of Conferences Édition Diffusion Presse Sciences,195, 1-5.
doi.org/10.1051/e3sconf/2020 19506007.
9.Mesa, A. C., & Spokas, K. A. (2011). Impacts of biochar (black carbon) additions on the sorption and efficacy of herbicides.
Herbicides and environment, 13, 315-340.
doi:10.5772/13620.
10.Pranagal, J., Oleszczuk, P., Tomaszewska-Krojańska, D., Kraska, P., & Różyło, K. (2017). Effect of biochar application on the physical properties of Haplic Podzol.
Soil and Tillage Research, 174, 92-103.
doi.org/10.1016/j.still.2017.06.007.
11.Wang, H., She, D., Fei, Y., & Tang, S. (2019). Synergic effects of biochar and polyacrylamide amendments on the mechanical properties of silt loam soil under coastal reclamation in China.
Catena, 182, 104-152.
doi.org/10.1016/ j.catena.2019.104152.
12.Razzaghi, F., Obour, P. B., & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis.
Geoderma, 361, 1-10.
doi.org/10.1016/j.geoderma.2019.114055.
14.Smith, C. W., Hadas, A., Dan, J., & Koyumdjisky, H. (1985). Shrinkage and Atterberg limits in relation to other properties of principal soil types in Israel.
Geoderma, 35 (1), 47-65.
doi.org/10.1016/0016-7061(85)90055-2.
15.Walkly, A., & Black, I. A. (1934). An examination of digestion methods for determining soil organic matter and a proposed modification of the chromic and titration. Soil Science Society of America Journal, 37, 29-38. doi.org/ 10.1097/00010694-193401000-00003.
16.Wallinga, I., Van Vark, W., Houba, V. J. G., & Van der Lee, J. J. (1989). Soil and plant analysis, series of syllabi part 7, plant analysis procedure.
Wageningen Agriculture University, Wageningen, 7, 197-200.
doi: 10.4236/opj.2019.911016.
18.Sparrevik, M., Adam, C., Martinsen, V., & Cornelissen, G. (2015). Emissions of gases and particles from charcoal/ biochar production in rural areas using medium-sized traditional and improved “retort” kilns.
Biomass and Bioenergy, 72, 65-73.
doi.org/10.1016/j.biombioe. 2014.11.016.
19.Zhou, Y., Gao, B., Zimmerman, A.R., Fang, J., Sun, Y., & Cao, X. (2013). Sorption of heavy metals on chitosan-modified biochars and its biological effects.
Chemical engineering journal, 231, 512-518.
doi.org/10.1016/j.cej. 2013.07.036.
20.Wan Ngah, W. S., Teong, L. C., Wong, C. S., & Hanafiah, M. A. K. M. (2012). Preparation and characterization of chitosan–zeolite composites.
Journal of applied polymer science,125 (3), 2417-2425.
doi.org/10.1002/ app.36503.
21.Stabnikov, V., Chu, J., Myo, A. N., & Ivanov, V. (2013). Immobilization of sand dust and associated pollutants using bioaggregation.
Water, Air, & Soil Pollution, 224, 1-9.
doi:10.1007/ s11270-013-1631-0.
22.Mirkhani, R., Saadat, S., Shabanpour, S. M., Aria, P. V., & Yegane, M. (2007). Estination of soil consistency limits by using readily available characteristics.
Journal of soil Science, 21, 205-207.
doi:10.22092/ijsr.2018.127087. [In Persian]
24.Usman, A. R., Abduljabbar, A., Vithanage, M., Ok, Y. S., Ahmad, M., Ahmad, M., Elfaki, J., Abdulazeem,
S. S., & Al-Wabel, M. I. (2015). Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry.
Journal of Analytical and Applied Pyrolysis, 115, 392-400.
doi.org/ 10. 1016/j.jaap.2015.08.016.
25.Garivani, H., Naderi Bani, A. M., Pour Kerman, M., & Amjadi, S. (2017). Investigating the effect of the amount of carbonates and organic matter on the liquid limit and plastic limit in seabed soils in the northern half of the Persian Gulf.
Oceanograph, 298, 9-15.
doi. 10. 18869/acadpub.joc.8.29.9. [In Persian]
26.Keller, T., & Dexter, A. R. (2012). Plastic limits of agricultural soils as functions of soil texture and organic matter content.
Soil Research, 50 (1), 7-17.
doi:10.1071/SR11174.
27.Aftabi, S., Fathi, S., & Aminfar, M. H. (2020). The Effect of Zeolite on Sandy-Silt Soil Mechanical Properties. International Journal of Geotechnical and Geological Engineering, 14(10), 269-278. doi.org/ Publication/ 10011518.
28.Zong, Y., Chen, D., & Lu, S. (2014). Impact of biochars on swell–shrinkage behavior, mechanical strength, and surface cracking of clayey soil.
Journal of Plant Nutrition and Soil Science, 177 (6), 920-926.
doi.org/10.1002/jpln. 201300596.
29.Herath, H. M. S. K., Camps-Arbestain, M., & Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol.
Geoderma, 209, 188-197.
doi. org/10.1016/j.geoderma.2013.06.016.
30.Qu, J., Li, B., Wei, T., Li, C., & Liu, B. (2014). Effects of rice-husk ash on soil consistency and compactibility.
Catena, 122, 54-60.
doi.org/10.1016/j.catena. 2014.05.016.
31.Asghari, Sh. (2011). Effects of Tabriz petrochemical sewage sludge on organic carbon, aggregate stability indices and consistency limits of a semiarid soil.
Journal of Water Soi. 25, 530-539.
doi: 10.22067/jsw.v0i0.9640. [In Persian]
32.Arthur, E., Oppong Danso, E., Beiranvand, M., Pouladi, N., Yakubu, A., Abenney-Mickson, S., & Sabi, E. B. (2020). Rice straw biochar effects on Atterberg limits and aggregate characteristics of an Acrisol in Ghana. Archives of Agronomy and Soil Science, 66 (13), 1861-1872. doi.org/10.1080/ 03650340.2019.1699240.
33.Rajabi, A. M., & Ardakani, S. B. (2020). Effects of natural-zeolite additive on mechanical and physicochemical properties of clayey soils.
Journal of Materials in Civil Engineering, 32 (10), 04020306.
doi.org/10.1061/ (ASCE)MT.1943-5533.0003336.
34.Zong, Y., Wang, Y., Sheng, Y., Wu, C., & Lu, S. (2018). Ameliorating soil acidity and physical properties of two contrasting texture Ultisols with wastewater sludge biochar.
Environmental Science and Pollution Research, 25, 25726-25733.
doi:10.1007/s11356-017-9509-0.