1.Fan, B., Wang, J., Fenton, O., Daly, K., Ezzati, G., & Chen, Q. (2019). Strategic differences in phosphorus stabilization by alum and dolomite amendments in calcareous and red soils.
Environmental Science and Pollution Research. 26 (5), 4842-4854.
https://doi.org/10. 1007/s11356-018-3968-9.
2.Lehmann, J., & Josep, S. (2015). Biochar for Environmental Management: Science, Technology and Implementation, 2 ed.: Routledge. London. 944 p.
3.Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change.
Nature Communications, 1, 1-9.
https://doi.org/10.1038/ncomms 1053.
4.UN. (2015). Transforming our world:
The 2030 Agenda for Sustainable Development. UN.
5.Hou, D., O’Connor, D., Igalavithana,
A. D., Alessi, D. S., Luo, J., Tsang,
D. C. W., Sparks, D. L., Yamauchi, Y., Rinklebe, J., & Ok, Y. S. (2020b). Metal contamination and bioremediation of agricultural soils for food safety and sustainability.
Nature Reviews Earth & Environment, 1, 366-381.
https://doi.org/ 10.1038/s43017-020-0061-y.
6.Chen, L., Chen, X. L., Zhou, C. H., Yang, H. M., Ji, S. F., Tong, D. S., Zhong,
Z. K., Yu, W. H., & Chu, M. Q. (2017). Environmental friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium a phosphate.
Journal of Cleaner Production, 156, 648-659.
https:// doi.org/10.1016/j.jclepro.2017.04.050.
7.Hu, P., Zhang, Y., Liu, L., Wang, X., Luan, X., Ma, X., Chu, P. K., Zhou, J.,
& Zhao, P. (2019). Biochar/struvite composite as a novel potential material for slow release of N and P.
Environmental Science and Pollution Research, 26, 17152-17162.
https:// doi.org/10.1007/s11356-019-04458-x.
8.Wang, L., Ok, Y. S., Tsang, D. C. W., Alessi, D. S., Rinklebe, J., Mašek, O., Bolan, N. S., & Hou, D. (2021). Biochar composites: Emerging trends, field successes and sustainability implications.
Soil Use and Management, 38, 14-38.
https://doi.org/10.1111/sum.12731.
9.Alam, M. S., Bishop, B., Chen, N., Safari, S., Warter, V., Byrne, J. M., Warchola, T., Kappler, A., Konhauser, K. O., & Alessi, D. S. (2020). Reusable magnetite nanoparticles–biochar composites for the efficient removal of chromate from water.
Scientific Reports, 10, 19007.
https:// doi.org/10.1038/s41598-020-75924-7.
10.Chen, X., Dai, Y., Fan, J., Xu, X., & Cao, X. (2020). Application of iron-biochar composite in topsoil for simultaneous remediation of chromium-contaminated soil and groundwater: Immobilization mechanism and long-term stability.
Journal of Hazardous Materials, 405, 124226.
https://doi.org/ 10.1016/j.jhazmat.2020.124226.
11.Diao, Z. H., Zhang, W. X., Liang, J. Y., Huang, S. T., Dong, F. X., Yan, L., Qian, W., & Chu, W. (2020). Removal of herbicide atrazine by a novel biochar based iron composite coupling with peroxy-monosulfate process from
soil: Synergistic effect and mechanism.
Chemical Engineering Journal,
409, 127684.
https://doi.org/10.1016/ j.cej.2020.127684.
12.Park, J. H., Wang, J.J., Xiao, R., Tafti, N., DeLaune, R. D., & Seo, D. C. (2018). Degradation of orange G by Fenton-like reaction with Fe-impregnated biochar catalyst.
Bioresource Technology, 249, 368-376.
https://doi.org/10.1016/ j.biortech.2017.10.030.
13.Qin, Y., Wu, X., Huang, Q., Beiyuan, J., Wang, J., Liu, J., Yuan, W., Nie, C., & Wang, H. (2023). Phosphate removal mechanisms in aqueous solutions by three different Fe-modified biochars. International Journal of Environmental Research and Public Health. 20 (1), 326. https://doi.org/10.3390/ijerph 20010326.
14.Oua, W., Lan, X., Guo, J., Caic, A., Liu, P., Liu, N., Liu, Y., & Lei, Y. (2023). Preparation of iron/calcium-modified biochar for phosphate removal from industrial wastewater.
Journal of Cleaner Production. https://doi.org/10.1016/j. jclepro.2022.135468.
15.Kong, D., & Wilson, L. D. (2017). Synthesis and characterization of cellulose-goethite composites and their adsorption properties with roxarsone.
Carbohydrate Polymers. 169, 282-294.
https://doi.org/10.1016/j.carbpol.2017.04.019.
17.Adra, A., Morin, G., Ona-Nguema, G., Menguy, N., Maillot, F., Casiot, C.
, Bruneel, O., Lebrun, S., Juillot, F., & Brest, J. (2013) Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage.
Environmental Science & Technology. 47, 12784-12792.
https://doi.org/10.1021/es4020234.
18.Kyzas, G. Z., Deliyanni, E. A., & Lazaridis, N. K. (2014). Magnetic modification of microporous carbon for dye adsorption.
Journal of Colloid and Interface Science. 430, 166-173.
https:// doi.org/10.1016/j.jcis.2014.05.049.
19.Pogorzelski, D., Filho, J. F. L., Matias, P. C., Santos, W. O., Vergütz, L., & Melo, L. C. A. (2020). Biochar as composite of phosphate fertilizer: Characterization and agronomic effectiveness.
Science of the Total Environment. 743, 140604.
https://doi. org/10.1016/j.scitotenv.2020.140604.
20.Reyhanitabar,
A., Farhadi, E., Ramezanzadeh, H., & Oustan, S. H. (2020). Effect of pyrolysis temperature and feedstock sources on physicochemical characteristics of biochar.
Journal of Agricultural Science and Technology. 22 (2), 547-561.
https:// civilica.com/ doc/ 1817061. [In Persian
]
22.Enders, A., & Lehmann, J. (2012). Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar002Eaq
Communications in Soil Science and Plant Analysis. 43(7), 1042-1052.
https://doi.org/10. 1080/00103624.2012.656167.
23.Liang, Y., Cao, X., Zhao, L., Xu, X., & Harris, W. (2014). Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property.
Journal of Environmental Quality.
43(4), 1504.
https://doi.org/10.2134/ jeq2014.01.0021.
24.Jalali, M., Ahmadi, N., & Zinli, M. (2011). Kinetics of phosphorus release from calcareous soils under different land use in Iran.
Journal of Plant Nutrition and Soil Science. 174 (1), 38-46.
https://doi.org/10.1002/jpln.200900108.
25.Lin, J., & Wang L. (2009). Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon.
Frontiers of Environmental Science & Engineering. 3(3), 320-324.
https://doi.org/10.1007/s11783-009-00 30-7.
26.Peng, Y., Chen, Q., Guan, C. Y., Yang, X., Jiang, X., Wei, M., Tan, J., & Li, X. (2023). Metal oxide modified biochars for fertile soil management: Effects on soil phosphorus transformation, enzyme activity, microbe community, and
plant growth.
Environmental Research. 231, 116258.
https://doi.org/10.1016/ j.envres.2023.116258.
27.Peng, Y., Zhang, B., Guan, C. Y., Jiang, X., Tan, J., & Li, X. (2022). Identifying biotic and abiotic processes of reversing biochar-induced soil phosphorus leaching through biochar modification with MgAl layered (hydr) oxides.
Science of the Total Environment. 843, 157037.
https://doi.org/10.1016/ j.scitotenv.2022.157037.
28.Wu, L., Zhang, S., Wang, J., & Ding, X. (2020). Phosphorus retention using iron (II/III) modified biochar in saline-alkaline soils: Adsorption, column and field tests.
Environmental Pollution. 261, 114223.
https://doi.org/10.1016/ j.envpol.2020.114223.
29.Wang, J., Li, F., Wang, M., Wang, H., Elgarhy, A. H., Liu, G., Zhang, L., & Hu, R. (2022). The effect of iron oxide
types on the photochemical transformation of organic phosphorus in water.
Chemosphere. 307, 135900.
https:// doi.org/ 10.1016/ j.chemosphere. 2022. 135900.
30.An, X., Yu, J., Yu, J., Tahmasebi, A., Wu, Z., Liu, X., & Yu, B. (2020). Copyrolysis of Biomass, Bentonite, and Nutrients as a New Strategy for the Synthesis of Improved Biochar-Based Slow-Release Fertilizers.
ACS Sustainable Chemistry & Engineering. 8(8), 3181-3190.
https://doi.org/10. 1021/acssuschemeng.9b06483.
31.An, X., Wu, Z., Shi, W., Qi, H., Zhang, L., Xu, X., & Yu, B. (2021). Biochar for simultaneously enhancing the slow-release performance of fertilizers and minimizing the pollution of pesticides. Journal of Hazardous Materials.
407, 124865.
https://doi.org/10.1016/ J.JHAZMAT.2020.124865.
32.Jia, Y., Hu, Z., Ba, Y., & Qi, W. (2021). Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency.
Chemical and Biological Technologies in Agriculture. 8 (1), 1-11.
https:// doi.org/10.1186/s40538-020-00205-4.
33.Ye, Z., Zhang, L., Huang, Q., & Tan, Z. (2019). Development of a carbon-based slow release fertilizer treated by bio-oil coating and study on its feedback effect on farmland application,
Journal of Cleaner Production. 239, 118085.
https://doi.org/10.1016/j.jclepro.2019.118085.
34.Zhang, Z., Yu, H., Zhu, R. Zhang, X., & Yan, L. (2020). Phosphate adsorption performance and mechanisms by nanoporous biochar–iron oxides from aqueous solutions.
Environmental Science and Pollution Research. 27, 28132-28145.
https://doi.org/10. 1007/s11356-020-09166-5.