1.Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services-A global review. Geoderma, 262, 101-111. doi:10.1016/j.geoderma. 2015.08.009.
2.Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E., Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S., Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., Zak, D. R., & Zeglin, L. H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252–1264. doi:10.1111/j. 14610248.2008.01245.x.
3.Futa, B., Oleszczuk, P., Andruszczak, S., Kwiecińska-Poppe, E., & Kraska, P. (2020). Effect of natural aging of biochar on soil enzymatic activity and physicochemical properties in long-term field experiment. Agronomy, 10, 449. https://doi.org/ 10. 3390/ agron omy10 030449.
4.Shi, W. (2011). Agricultural and ecological significance of soil enzymes: soil carbon sequestration and nutrient cycling. In ‘Soil enzymology’. (Eds G Shukla, A Varma) pp. 43-60. (Springer: Berlin, Heidelberg) doi:10.1007/978-3-642-14225-3_3.
5.Jog, R., Nareshkumar, G., & Rajkumar, S. (2012). Plant growth promoting potential and soil enzyme production of the
most abundant Streptomyces spp. from wheat rhizosphere. Journal of Applied Microbiology, 113, 1154–1164. doi:10. 1111/j.1365-2672.2012.05417.x.
6.Rao, M. A., Scelza, R., Scotti, R., & Gianfreda, L. (2010). Role of enzymes in the remediation of polluted environments. Journal of Soil Science and Plant Nutrition, 10, 333-353. doi:10.4067/ S0718-9516201000 0100008.
7.Caldwell, B. A. (2005). Enzyme activities as a component of soil biodiversity: a review. Pedobiologia, 49, 637-644. doi:10.1016/j.pedobi.2005. 06.003.
8.Harrison, M. D. (2016). Nutrient dynamics. In ‘Encyclopedia of estuaries’. (Ed. MJ Kennish) pp. 462-463. (Springer: Dordrecht, Netherlands) doi:10.1007/ 978-94-017-8801-4-75.
9.Macdonald, C. A., Delgado-Baquerizo, M., Reay, D. S., Hicks, L. C., & Singh, B. K. (2018). Soil nutrients and soil carbon storage: modulators and mechanisms. In ‘Soil carbon storage’. (Ed. BK Singh) pp. 167–205. (Academic Press)
doi:10.1016/B978-0-12-812766-7. 00006-8.
10.Pérez-Piqueres, A., Edel-Hermann, V., Alabouvette, C., & Steinberg, C. (2006). Response of soil microbial communities to compost amendments. Soil Biology and Biochemistry, 38, 460-470. doi:10. 1016/j.soilbio. 2005.05.025.
11.Cleveland, C. C., Nemergut, D. R., Schmidt, S. K., & Townsend, A. R. (2007). Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry, 82, 229-240. doi:10.1007/s10533-006-9065-z.
12.Masto, R. E., Kumar, S., Rout, T. K., Sarkar, P., George, J., & Ram, L. C. (2013). Biochar from water hyacinth (
Eichornia crassipes) and its impact
on soil biological activity.
Catena,
111, 64-71.
https://doi.org/10.1016/j. catena.2013.06.025.
13.De Tender, C. A., Debode, J., Vandecasteele, B., D’Hose, T., Cremelie, P., Haegeman, A., Ruttink, T., Dawyndt, P., & Maes, M. (2016). Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended
with biochar.
Applied Soil Ecology, 107, 1-12.
https://doi.org/10.1016/j. apsoil.2016.05.001.
14.Sherene, T. (2017). Role of soil enzymes in nutrient transformation: A review. Bio Bulletin, 3, 109-131. (Published
by Research Trend, Website: www.biobulletin.com)
15.Garbuz, S., Mackay, A., Camps-Arbestain, M., DeVantier, B., & Minor, M. (2021). Biochar amendment improves soil physico-chemical properties and alters root biomass and the soil food web in grazed pastures.
Agriculture, Ecosystems & Environment, 319, 107517.
https://doi.org/10.1016/ j.agee.2021.107517.
16.Mierzwa-Hersztek, M., Gondek, K., Klimkowicz-Pawlas, A., Chmiel, M. J., Dziedzic, K., & Taras, H. (2019). Assessment of soil quality after biochar application based on enzymatic activity and microbial composition.
International Agrophysics, 33, 331-336.
doi: https:// doi.org/10.31545/intagr/110807.
17.Wang, X., Song, D., Liang, G., Zhang, Q., Ai, C., & Zhou, W. (2015). Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil.
Applied Soil Ecology, 96, 265-272.
doi:10.1016/j.apsoil.2015.08.018.
18.Zhang, L., Xiang, Y., Jing, Y., & Zhang, R. (2019). Biochar amendment effects on the activities of soil carbon, nitrogen, and phosphorus hydrolytic enzymes: a meta-analysis. Environmental Science and Pollution Research, 26(22), 22990-23001.
doi: 10.1007/s11356-019-05604-1.Epub 2019 Jun 10.
19.Song, D., Xi, X., Huang, S., Liang, G., Sun, J., Zhou, W., & Wang, X. (2016). Short-term responses of soil respiration and C-cycle enzyme activities to additions of biochar and urea in a calcareous soil. PLOS ONE,
11 (9), e0161694. http://dx.doi.org/ 10.1371/journal.pone.0161694.
20.Awad, Y. M., Blagodatskaya, E., Ok,
Y. S., & Kuzyakov, Y. (2013). Effects of polyacrylamide, biopolymer and biochar on the decomposition of14C-labelled maize residues and on their stabilization in soil aggregates. European Journal of Soil Science,
64 (4), 488–499. https://doi. org/ 10.1111/ejss.12034.
21.Elzobair, K. A., Stromberger, M. E., Ippolito, J. A., & Lentz, R. D. (2016). Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere, 142, 145-152. https:// doi.org/ 10.1016/ jchemosphere.2015. 06.044.
22.Paz-Ferreiro, J., Gasco, G., Gutiérrez, B., & Méndez, A. (2012). Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil.
Biology and Fertility of Soils, 48(5), 511-517.
doi:10.1007/s00374-011-0644-3.
23.Picariello, E., Baldantoni, D., Muniategui-Lorenzo, S., Concha-Graña, E., & De Nicola, F. (2021). A synthetic quality index to evaluate the functional stability of soil microbial communities after perturbations.
Ecological Indicators, 128, 107844.
https://doi.org/ 10.1016/ j.ecolind.2021.107844.
27.Waling, I., Vark, W. V., Houba, V. J. G., & Van der lee, J. J. (1986). Soil and plant analysis, a series of syllabi. Part 7. Plant analysis procedures. Wageningen Agriculture University, Netherland.
28.Nelson, R. E. (1982). Carbonate and gypsum. In: Page, A. L., Miller, R. H., and Keeney, D. R. Methods of soil analysis. Part2. Chemical and microbiological properties (2nd Ed). Agronomy monograph, No.9. American society of Agronomy, Madison, Wisconsin, USA. Pp, 181-196.
29.Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In: Miller, A.L., Methods of soil analysis, part 2. Chemical and mineralogical properties (2nd Ed). Agronomy series NO.9. Soil Science Society of American Journal, USA.
pp. 403-430.
30.Pierzynski, G. M. (2000). Methods of phosphorus analysis for soils, sediments, residuals, and waters. Southern Cooperative Series Bulletin No. 396. 98p. http://www.soil.ncsu.edu/ sera17/ publications/sera17-2/pm_cover.htm.
31.Singh, B., Camps-Arbestain, M., & Lehmann, J. (2017). Biochar: a guide to analytical methods. CSIRO Publishing. 320p.
32.Khadem, A., & Raiesi, F. (2017). Responses of microbial performance and community to maize biochar in calcareous sandy and clayey soils. Applied Soil Ecology, 114, 16-27. http://dx.doi.org/10.1016/j.apsoil.2017. 02.018.
33.Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (2012). Methods in soil biology: Springer Science & business media. 418 p. DOl: 10.1 0071978·3-642-60966-4.
34.Orwin, K. H., & Wardle, D. A. (2004). New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances.
Soil Biology and Biochemistry, 36, 1907-1912.
https://doi.org/10.1016/j.soilbio.2004. 04.036.
35.Cooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., & Kaiser, M. (2020). Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions.
Agriculture, Ecosystems & Environment, 295, 106882.
https:// doi.org/10.1016/j.agee.2020.106882.
36.Gao, S., DeLuca, T. H., & Cleveland,
C. C. (2019). Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis. Science of the Total Environment, 654, 463-472. doi:10.1016/ j.scitotenv. 2018.11.124.
37.Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures.
Journal of Analytical and Applied Pyrolysis, 94, 138-145.
https:// doi.org/10.1016/j.jaap.2011.11.018.
38.Kazemi, A. R., Varasteh Khanlari, Z., & Zarabi, M. (2023). Investigating the release of nitrogen, phosphorus and potassium from biocharsof grape waste, straw and wheat stubble and walnut shell. Iranian Journal of Soil and Water research, 54(9), 1286-1299. [In Persian] doi:https://doi.org/10.22059/ijswr.2023.362309.669535.
39.Antonious, G. F. (2018). Biochar and Animal Manure Impact on Soil, Crop Yield and Quality. In Agricultural Waste and Residues, IntechOpen. 45-67. doi: 10.5772/intechopen.77008.
40.Wang, M., Markert, B., Shen, W., Chen, W., Peng, C., & Ouyang, Z. (2011). Microbial biomass carbon and enzyme activities of urban soils in Beijing.
Environmental Science and Pollution Research, 18 (6), 958-967.
doi: 10.1007/ s11356-011-0445-0.
41.Huang, D., Liu, L., Zeng, G., Xu, P., Huang, C., Deng, L., Wang, R., & Wan, J. (2017). The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal contaminated sediment.
Chemosphere, 174, 545-553.
https:// doi.org/10.1016/j.chemosphere.2017.
01.130.
42.Nourmandipour, F., Delavar, M. A., Lal, R., Joseph, S., & Siewert, C. (2020). Influence of Rice Husk Biomass and Its Biochar on Some Enzymatic Activities in a Calcareous Sandy. Journal of soil and water research, 51 (7), 1841-1855. [In Persian] doi: 10.22059/ijswr.2020. 295313.668458)
43.Foster, E. J., Hansen, N., Wallenstein, M., & Cotrufo, M. F. (2016). Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agriculture, Ecosystems & Environment, 233, 404-414. http://dx.doi.org/10.1016/j.agee.2016. 09.029.
44.Bera, T., Collins, H. P., Alva, A. K., Purakayastha, T. J., & Patra, A. K. (2016). Biochar and manure effluent effects on soil biochemical properties under maize production.
Applied Soil Ecology, 107, 360-367.
http:// dx.doi. org/10.1016/j.apsoil.2016 .07.011.
45.Lima, J. R. S., Silva, W. M., Medeiros, E. V., Duda, G. P., Corrêa, M. M., Martins Filho, A. P., Clermont-Dauphin, C., Antonino, A. C. D., & Hammecker, C. (2018). Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment.
Geoderma, 319, 14-23.
doi:10.1016/j.geoderma.2017.12.033.
46.Ge, X., Cao, Y., Zhou, B., Wang, X., Yang, Z., & Li, M. H. (2019). Biochar addition increases subsurface soil microbial biomass but has limited effects on soil CO2 emissions in subtropical moso bamboo plantations. Applied Soil Ecology, 142, 155-165. https:// doi.org/10.1016/j.apsoil.2019. 04.021.
47.Demisie, W., Liu, Z., & Zhang, M. (2014). Effect of biochar on carbon fractions and enzyme activity of red soil.
Catena, 121, 214-221.
doi:10.1016/j. catena.2014.05.020.
48.Paz-Ferreiro, J., Fu, S., Méndez, A., & Gasc, G. (2014). Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities.
Journal of Soils and Sediments, 14, 483-494.
doi:10. 1007/s11368-013-0806-z.
49.Luo, L., & Guo, J. D. (2016). Alteration of extracellular enzyme activity and microbial abundance by biochar addition: Implication for carbon sequestration in subtropical mangrove sediment.
Journal of environmental management, 182, 29-36.
http://dx.doi. org/10. 1016/j.jenvman.2016.07.040.
50.Nie, C., Yang, X., Niazi, N. K., Xu, X., Wen, Y., Rinklebe, J., Ok, Y. S., Xu, S., & Wang, H. (2018) Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study. Chemosphere, 200, 274-282. https:// doi.org/10.1016/j.chemosphere, 134.
51.Wojewodzki, P., Lemanowicz, J., Debska, B., & Haddad, S. A. (2022). Soil enzyme activity response under the amendment of different types of biochar.
Agronomy, 12(3), 569.
https://doi.org/ 10.3390/agronomy12030569.
52.Behravan, H. R., Khorassani, R., Fotovat, A., Moezei, A. A., & Taghavi, M. (2020). The Effect of Humic Acid and Phosphorus Fertilizer on Phosphatase Enzymes, Active Carbon and Available Phosphorus in Sugarcane Rhizosphere. Iranian Journal of soil and water research, 5 (10), 2571-2581. [In Persian] doi: 10.22059/IJSWR. 2019.279387.668168.
53.Zhai, L., Caiji, Z., Liu, J., Wang, H., Ren, T., Gai, X., Xi, B., & Liu, H. (2015). Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities.
Biology and Fertility of Soils, 51, 113-122.
doi: 10.1007/s00374-014-0954-3.
54.Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., & Marinari, S. A. R. A. (2012). Soil enzymology: classical and molecular approaches. Biology and fertility of soils, 48 (7), 743-762. doi:10.1007/s00374-012-0723-0.
55.Piotrowska-Długosz, A., & Wilczewski, E. (2014). Soil Phosphatase Activity and Phosphorus Content as Influenced by Catch Crops Cultivated as Green Manure. Polish Journal Environmental Studies, 23 (1), 157-165.
56.Liao, X., Kang, H., Haidar, G., Wang, W., & Malghani, S. (2022). The impact of biochar on the activities of soil nutrients acquisition enzymes is potentially controlled by the pyrolysis temperature: A
meta-analysis.
Geoderma, 411, 115692.
https://doi.org/10.1016/ j.geoderma.2021.115692.
57.Munir, M. A., Yousaf, B., Ali, M. U., Dan, C., Abbas, Q., Arif, M., & Yang, X. (2021). In situ synthesis of micro-plastics embedded sewagesludge co-pyrolyzed biochar: implications for the remediation of Cr and Pb availability and enzymatic activities from the contaminated soil. Journal of Cleaner Production, 302,127005. https:// doi. org/10. 1016/j. jclep ro. 2021. 127005.
58.Zhang, M., Cheng, G., Feng, H., Sun, B., Zhao, Y., Chen, H., & Zhang, A. (2017). Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China.
Environmental Science and Pollution Research, 24, 10108-10120.
doi:10.1007/s11356-017-8505-8.
59.Bailey, V. L., Fansler, S. J., Smith, J. L., & Bolton, H. (2011). Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization.
Soil Biology and Biochemistry, 43, 296-301.
https://doi. org/10.1016/j.soilbio.2010.10.014.
60.Hinojosa, M. B., Carreira, J. A., García-Ruíz, R., & Dick, R. P. (2004). Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils.
Soil Biology and Biochemistry, 36(10), 1559-1568.
doi:10.1016/j.soilbio. 2004.07.003.
61.Jing, Y., Zhang, Y., Han, I., Wang, P., Mei, Q., & Huang, Y. (2020). Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Scientific Reports, 10, 8837. https:// doi.org/10.1038/s41598-020-65796-2.
62.Ghosh, D., & Kumar Maiti, S. (2021). Effect of invasive weed biochar amendment on soil enzymatic activity and respiration of coal mine spoil: a laboratory experiment study
. Biochar,3, 519-533.
doi:10.1007/s42773-021-00109-y.