Isolation and characterization of salt tolerant-plant growth promoting actinobacteria from the rhizosphere of crop plants

Document Type : Complete scientific research article

Authors

1 M.Sc. Student, Dept. of soil science, Gorgan university of Agricultural Sciences and Natural Resources, Gorgan, Iran.

2 Associate Professor, Department of Soil Science and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Associate Prof., Dept. of Soil Science, Tehran University of Agricultural Sciences and Natural Resources, Tehran, Iran

Abstract

Background and objectives: Over the past few decades, soil salinity has reduced global agricultural production by more than 50%. This problem is considered one of the main barriers to crop productivity in arid and semi-arid regions. Salinity stress affects plant growth by altering osmotic pressure and ionic toxicity, disrupting soil biodiversity. Halotolerant actinobacteria can mitigate abiotic stresses such as salinity and drought and improve soil physical, chemical, and biological properties, leading to higher agricultural crop yields. Plant growth-promoting actinobacteria also increase nutrient availability, improve plant growth, and control plant pathogens. Therefore, this research was conducted with the aim of isolating and screening halotolerant actinobacterial isolates from the rhizosphere of agricultural plants and evaluate their silicate solubilization ability and some other plant growth-promoting mechanisms.
Materials and methods: Plant growth-promoting actinobacteria were isolated and screened from the rhizosphere of agricultural crops corn, tomato, soybean, and sesame. To assess their salinity tolerance, all isolates were evaluated in culture medium with different salinity levels. Actinobacteria isolates with the ability to grow in medium containing 1M NaCl were selected and then the plant growth-promoting properties of the isolates including: the ability to produce indole compounds, solubilize inorganic phosphate, solubilize inorganic silicate, produce siderophores, ammonia, and hydrolytic enzymes including cellulase and protease were measured.
Results: A total of 67 actinobacteria isolates were isolated from the rhizosphere of corn, tomato, soybean, and sesame crops. All isolates were able to grow in a culture medium containing 0.2 M sodium chloride. In a medium with 0.5 M sodium chloride, 80% of the isolates grew. Growth was observed in 32.8% of the isolates in a medium with 1 M sodium chloride, 23.9% in a medium with 1.5 M sodium chloride, and one isolate was able to grow in a medium containing 2 M sodium chloride. All actinobacterial isolates were capable of producing indolic compounds, with isolate GP12 showing the highest production rate. Twenty isolates were able to dissolve inorganic phosphate and GP64 isolate exhibiting the highest dissolution rate with 187.8 mg L-1. Six isolates could dissolve inorganic silicate in a solid environment, and quantitative measurements indicated that isolate GP32 had the highest rate (122.79 mg L-1) of inorganic silicate dissolution. Fourteen isolates were capable of producing siderophores, with isolate GP67 achieving the highest siderophore production in quantitative measurements. Isolates GP20, GP67, GP91 had qualitatively more ammonification ability than other isolates. Regarding the production of hydrolytic enzymes, 11 isolates were able to produce cellulase enzyme, and 3 isolates had the ability to produce protease enzyme.
Conclusion:
In the current study, actinobacterial isolates demonstrated growth in high-salinity sodium chloride culture media and exhibited multiple plant growth-promoting characteristics. These isolates show promise as agents to improve plant growth and crop yield. Confirming their effectiveness and capabilities requires pot and field trials to evaluate their influence on plant development and nutrient absorption.

Keywords

Main Subjects


1.Etesami, H., & Glick, B. R. (2020). Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environmental and Experimental Botany, 178, 104124. doi:10.1016/j.envexpbot.2020.104124.
2.Saiz-Rubio, V., & Rovira-Más, F. (2020). From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy, 10(2), Article 2. doi:10.3390/agronomy10020207.
3.Dewi, E. S., Abdulai, I., Bracho-Mujica, G., & Rötter, R. P. (2022). Salinity constraints for small-scale agriculture and impact on adaptation in North Aceh, Indonesia. Agronomy, 12(2), Article 2. doi:10.3390/agronomy12020341.
4.Yang, C., Lv, D., Jiang, S., Lin, H., Sun, J., Li, K., & Sun, J. (2021). Soil salinity regulation of soil microbial carbon metabolic function in the Yellow River Delta, China. Science of The Total Environment, 790, 148258. doi:10.1016/ j.scitotenv.2021.148258.
5.Olaniyan, O. T., & Adetunji, C. O. (2021). Biochemical role of beneficial microorganisms: An overview on recent development in environmental and agro science. In C. O. Adetunji, D. G. Panpatte, & Y. K. Jhala (Eds.), Microbial Rejuvenation of Polluted Environment: Volume 3 (pp. 21-33). Springer. doi:10.1007/978-981-15-7459-7_2.
6.Verma, Dr. P., Yadav, A. N., Kazy, S., Saxena, A., & Suman, A. (2014). Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. International Journal of Current Microbiology and Applied Sciences, 3, 432-447.
7.Kaari, M., Manikkam, R., Annamalai, K. K., & Joseph, J. (2023). Actinobacteria as a source of biofertilizer/biocontrol agents for bio-organic agriculture. Journal of Applied Microbiology, 134(2), lxac047. doi:10.1093/jambio/lxac047.
8.Singh, R., & Dubey, A. K. (2018). Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers in Microbiology, 9. doi:10.3389/fmicb. 2018.01767.
9.Sharma, P., Aswini, K., Sai Prasad, J., Kumar, N., Pathak, D., Gond, S., Venkadasamy, G., & Suman, A. (2023). Characterization of actinobacteria from wheat seeds for plant growth promoting traits and protection against fungal pathogens. Journal of Basic Microbiology, 63(3-4), 439-453. doi:10.1002/jobm. 202200259.
10.Sathya, A., Vijayabharathi, R., & Gopalakrishnan, S. (2017). Plant growth-promoting actinobacteria: A new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech, 7(2), 102. doi:10.1007/s13205-017-0736-3.
11.Mahmood, A., Kataoka, R., Turgay, O. C., & Yaprak, A. E. (2019). Halophytic microbiome in ameliorating the stress. In M. Hasanuzzaman, K. Nahar, & M. Öztürk (Eds.), Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes (pp. 171-194). Springer. doi:10.1007/978-981-13-3762-8_8.
12.Fang, B. Z., Salam, N., Han, M. X., Jiao, J. Y., Cheng, J., Wei, D. Q., Xiao, M., & Li, W. J. (2017). Insights on the effects of heat pretreatment, pH, and calcium salts on isolation of rare actinobacteria from Karstic Caves. Frontiers in Microbiology, 8. doi:10.3389/fmicb. 2017.01535.
13.Wahyudi, A., Priyanto, J., Afrista, R., Kurniati, D., & Astuti, R. (2019). plant growth promoting activity of actinomycetes isolated from soybean rhizosphere. OnLine Journal of Biological Sciences, 19, 1-8. doi:10. 3844/ojbsci.2019.1.8.
14.Djebaili, R., Pellegrini, M., Rossi, M., Forni, C., Smati, M., Del Gallo, M., & Kitouni, M. (2021). Characterization of plant growth-promoting traits and inoculation effects on Triticum durum of actinomycetes isolates under salt stress conditions. Soil Systems, 5(2), Article 2. doi:10.3390/soilsystems5020026.
 
15.Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indole acetic acid. Plant Physiology, 26(1), 192–195. doi:10.1104/pp.26.1.192.
16.Hanson, W. C. (1950). The photometric determination of phosphorus in fertilizers using the phosphovanado-molybdate complex. Journal of the Science of Food and Agriculture, 1(6), 172-173. doi:10.1002/jsfa.27400 10604.
17.Sukumar, K., Swarnabala, G., & Gangatharan, M. (2023). Experimental studies on isolation and characterization of silicate solubilizing Bacillus tequilensis SKSSB09. Journal of Applied Biology and Biotechnology, 11(4), 135-140. doi:10.7324/JABB. 2023.119115.
18.Arora, N. K., & Verma, M. (2017). Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech, 7(6), 381. doi:10.1007/s13205-017-1008-y.
19.Miller, D. N., Bryant, J. E., Madsen, E. L., & Ghiorse, W. C. (1999). Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Applied and Environmental Microbiology, 65(11), 4715–4724. doi:10.1128/AEM. 65.11.4715-4724.1999.
20.Li, L., Mohamad, O. A. A., Ma, J., Friel, A. D., Su, Y., Wang, Y., Musa, Z., Liu, Y., Hedlund, B. P., & Li, W. (2018). Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie van Leeuwenhoek, 111(10), 1735-1748. doi:10.1007/s10482- 018-1062-4.
21.Mohamad, O. A. A., Liu, Y. H., Li, L., Ma, J. B., Huang, Y., Gao, L., Fang, B. Z., Wang, S., El-Baz, A. F., Jiang, H. C., & Li, W. J. (2022). Synergistic plant-microbe interactions between endophytic actinobacteria and their role in plant growth promotion and biological control of cotton under salt stress. Microorganisms, 10(5), Article 5. doi:10.3390/microorganisms10050867.
22.Subramani, R., & Aalbersberg, W. (2013). Culturable rare actinomycetes: Diversity, isolation and marine natural product discovery. Applied Microbiology and Biotechnology, 97(21), 9291-9321. doi:10.1007/s00253-013-5229-7.
23.Vo, Q. A. T., Ballard, R. A., Barnett, S. J., & Franco, C. M. M. (2021). Isolation and characterisation of endophytic actinobacteria and their effect on the growth and nodulation of chickpea (Cicer arietinum). Plant and Soil, 466(1), 357-371. doi:10.1007/s 11104-021-05008-6.
24.Mathew, B. T., Torky, Y., Amin, A., Mourad, A. H. I., Ayyash, M. M., El-Keblawy, A., Hilal-Alnaqbi, A., AbuQamar, S. F., & El-Tarabily, K. A. (2020). Halotolerant marine rhizosphere- competent actinobacteria promote Salicornia bigelovii growth and seed production using seawater irrigation. Frontiers in Microbiology, 11. doi:10. 3389/fmicb.2020.00552.
25.Mao, X., Yang, Y., Guan, P., Geng, L., Ma, L., Di, H., Liu, W., & Li, B. (2022). Remediation of organic amendments on soil salinization: Focusing on the relationship between soil salts and microbial communities. Ecotoxicology and Environmental Safety, 239, 113616. doi:10.1016/j.ecoenv.2022.113616.
26.Gao, Y., Han, Y., Li, X., Li, M., Wang, C., Li, Z., Wang, Y., & Wang, W. (2022). A Salt-tolerant D2-8 from rhizosphere soil of augments soybean tolerance to soda saline-alkali Stress. Polish Journal of Microbiology, 71(1), 43-53. https://doi.org/10.33073/ pjm-2022-006.
27.Nazari, M. T., Schommer, V. A., Braun, J. C. A., dos Santos, L. F., Lopes, S. T., Simon, V., Machado, B. S., Ferrari, V., Colla, L. M., & Piccin, J. S. (2023). Using Streptomyces spp. as plant growth promoters and biocontrol agents. Rhizosphere, 27, 100741. doi:10.1016/ j.rhisph.2023.100741.
28.Guignard, M. S., Leitch, A. R., Acquisti, C., Eizaguirre, C., Elser, J. J., Hessen, D. O., Jeyasingh, P. D., Neiman, M., Richardson, A. E., Soltis, P. S., Soltis, D. E., Stevens, C. J., Trimmer, M., Weider, L. J., Woodward, G., & Leitch, I. J. (2017). Impacts of nitrogen and phosphorus: From genomes to natural ecosystems and agriculture. Frontiers in Ecology and Evolution, 5. doi:10.3389/ fevo.2017.00070.
29.Timofeeva, A., Galyamova, M., & Sedykh, S. (2022). Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants, 11(16), Article 16. doi:10.3390/ plants11162119.
30.Yadav, A. N., Sharma, D., Gulati, S., Singh, S., Dey, R., Pal, K. K., Kaushik, R., & Saxena, A. K. (2015). Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Scientific Reports, 5(1), 12293. doi:10.1038/srep12293.
31.Ghorbani Nasrabadi, R., Greiner, R., Mayer-miebach, E., & Menezes-Blackburn, D. (2023). Phosphate solubilizing and phytate degrading Streptomyces isolates stimulate the growth and P accumulation of maize (Zea mays) fertilized with different phosphorus sources. Geomicrobiology Journal, 40(4), 325-336. doi:10.1080/ 01490451.2023.2168799.
32.Jog, R., Nareshkumar, G., & Rajkumar, S. (2012). Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. Journal of Applied Microbiology, 113(5), 1154-1164. doi:10.1111/j.1365-2672.2012.05417.x.
33.Nandimath, A. P., Karad, D. D., Gupta, S. G., & Kharat, A. S. (2017). Consortium inoculum of five thermo-tolerant phosphate solubilizing actinomycetes for multipurpose biofertilizer preparation. Iranian Journal of Microbiology, 9(5), 295-304.
34.Etesami, H., & Glick, B. R. (2024). Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiological Research, 281, 127602. doi:10.1016/j. micres.2024.127602.
35.Abdallah, M. E., Haroun, S. A., Gomah, A. A., El-Naggar, N. E., & Badr, H. H. (2013). Application of actinomycetes as biocontrol agents in the management of onion bacterial rot diseases. Archives of Phytopathology and Plant Protection, 46(15), 1797-1808. doi:10.1080/03235 408. 2013.778451.
36.Ganesh, J., Hewitt, K., Devkota, A. R., Wilson, T., & Kaundal, A. (2024). IAA-producing plant growth promoting rhizobacteria from Ceanothus velutinus enhance cutting propagation efficiency and Arabidopsis biomass. Frontiers in Plant Science, 15. doi:10.3389/fpls. 2024.1374877.
37.Kaushal, M., & Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: Drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66(1), 35-42. doi:10. 1007/s13213-015-1112-3.
38.Khan, A., Singh, P., & Srivastava, A. (2018). Synthesis, nature and utility of universal iron chelator – Siderophore: A review. Microbiological Research, 212-213, 103-111. doi:10.1016/j.micres. 2017.10.012.
39.Zhu, Y. X., Gong, H. J., & Yin, J. L. (2019). Role of silicon in mediating salt tolerance in plants: A review. Plants, 8(6), Article 6. doi:10.3390/plants 8060147.
40.Cruz, J. A., Tubana, B. S., Fultz, L. M., Dalen, M. S., & Ham, J. H. (2022). Identification and profiling of silicate-solubilizing bacteria for plant growth-promoting traits and rhizosphere competence. Rhizosphere, 23, 100566. doi:10.1016/j.rhisph.2022.100566.
41.Sulizah, A., Rahayu, Y. S., & Dewi, S. K. 2018. Isolation and characterization of silicate solubilizing bacteria from paddy rhizosphere (Oryza sativa L.). Journal of Physicd: Conference Series. 1108, 1-6. doi:10. 1088/ 1742-6596/1108/1/012046.
42.Janardhan, S.R. 2014. Studies on silicon solubilising bacteria in rice. M.Sc. (Ag) thesis, Mahatma Phule Krishi Vidyapeeth, Rahuri, 83p.
 
43.Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2023). Plant growth-promoting soil bacteria: nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities. Plants, 12(24), Article 24. doi:10.3390/plants 12244074.
44.Afzal, I., Iqrar, I., Shinwari, Z. K., & Yasmin, A. (2017). Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regulation, 81(3), 399-408. doi:10. 1007/s10725-016-0216-5.
45.Wang, Z., Solanki, M. K., Pang, F., Singh, R. K., Yang, L. T., Li, Y. R., Li, H. B., Zhu, K., & Xing, Y. X. (2017). Identification and efficiency of a nitrogen-fixing endophytic actinobacterial strain from sugarcane. Sugar Tech, 19(5), 492-500. doi:10.1007/s12355-016-0498-y.
46.Brígido, C., Singh, S., Menéndez, E., Tavares, M. J., Glick, B. R., Félix, M. do R., Oliveira, S., & Carvalho, M. (2019). Diversity and Functionality of Culturable Endophytic Bacterial Communities in Chickpea Plants. Plants, 8(2), Article 2. doi:10.3390/ plants8020042.
47.Brígido, C., Singh, S., Menéndez, E., Tavares, M. J., Glick, B. R., Félix, M. do R., Oliveira, S., & Carvalho, M. (2019). Diversity and functionality of culturable endophytic bacterial communities in chickpea Plants. Plants, 8 (2), Article 2. doi:10.3390/ plants 8020042.