The effect of natural forest cover, afforestation and pasture on soil organic and mineral characteristics

Document Type : Complete scientific research article

Authors

1 Department of Rangeland, Faculty of Natural Resources, Tarbiat Modares University

2 PhD student, Rangeland Science Department, Tarbiat Modares University, Faculty of Natural Resources, Noor, Iran.

3 Assistant professor, Department of Wood and Paper Science and Technology, Karaj Branch, Islamic Azad University, Karaj, Iran.

Abstract

Background and objectives: The increasing demands of a growing population have led to significant pressures on forest habitats, resulting in degradation and land use change. Land cover changes can profoundly impact soil dynamics, including physical, chemical, and biological characteristics. However, limited studies have focused on soil quality across different land uses. This research aims to investigate the effects of various land uses on the organic and mineral layers of soil in the Abbassabad region of Mazandaran province.

Materials and Methods: In this study, various soil characteristics were examined in different habitats, including natural mamrez-Anjili natural forest pure alder forestry, pure pellet forestry, mixed forestry, and pasture cover in the Abbas Abad region the of Mazandaran province. In order to investigate the effects of land covers on the different characteristics of the organic and mineral layers of the soil, after preliminary investigations and field visits, parts of the above-mentioned lands were selected which were continuous with each other and had minimal height differences. From the sea level, minimal change in percentage and direction of slope was observed in them. Then, three plots of one hectare (100 x 100) were selected in each of the habitats with distances of at least 600 meters. In each of the plots, 4 samples were taken from the organic layer (leaves or debris on the surface of the earth) and mineral soil (surface of 30 x 30 cm to a depth of 10 cm) and a total of 12 samples of the organic layer and 12 soil samples were taken to the laboratory for analysis. A part of the soil samples was passed through a 2 mm sieve after drying to perform physical and chemical tests, and the second part of the samples was used for biological tests until the time of the test at a temperature of 4 degrees centigrade. Grade was maintained. In general, standard soil methods were used to conduct physical, chemical and biological soil tests.

Results: The results demonstrate that elevated levels of nitrogen, phosphorus, potassium, and calcium positively influence soil fertility characteristics, as well as the physical and chemical properties of microbial and enzyme activity, soil worm populations, and soil organism populations in natural forests and mixed forestry. Conversely, pasture habitats, pure pellet forestry, and pure alder forestry, characterized by the production of organic matter with higher carbon content and carbon-to-nitrogen ratio, result in reduced organic matter decomposition (indicated by thicker litter layers) and subsequently, diminished characteristics in the soil mineral layer. Additionally, natural forest cover shows higher levels of ammonium and nitrate compared to other land uses. Furthermore, the presence of plant residues, along with high nitrogen content and a low carbon-to-nitrogen ratio, enhances the soil's efficacy in nitrogen transformation.

Conclusion: Based on the findings of this research, it can be concluded that natural forest cover plays a significant role in preserving soil quality. Therefore, the protection of natural forest cover should be prioritized. Moreover, in areas undergoing degradation, the implementation of tree covers with suitable combinations can be employed to restore natural ecosystems, enhance fertility, and facilitate the nutrient cycling of the soil.

Keywords

Main Subjects


  1. Chimitdorzhieva,D. (2023). Paths of Carbon Sequestration in Land Use (Literature Review). Contemporary Problems of Ecology, 16, 274-284. doi: https://doi.org/10.1134/S1995425523030034
  2. Bodo, T., Gimah, B. G., & Seomoni, K. J. (2021). Deforestation and habitat loss: Human causes, consequences and possible solutions. Journal of Geographical Research, 4(2), 22-30. doi: https://doi.org/10.30564/jgr.v4i2.3059
  3. Kebebew, S., Bedadi, B., Erkossa, T., Yimer, F., & Wogi, L. (2022). Effect of different land-use types on soil properties in Cheha District, South-Central Ethiopia. Sustainability, 14(3), 1323. doi: https://doi.org/10.3390/su14031323
  4. Huang, W., Zong, M., Fan, Z., Feng, Y., Li, S., Duan, C., & Li, H. (2021). Determining the impacts of deforestation and corn cultivation on soil quality in tropical acidic red soils using a soil quality index. Ecological Indicators, 125, doi: https://doi.org/10.1016/j.ecolind.2021.107580
  5. Ayoubi, S., Sadeghi, N., Abbaszadeh Afshar, F., Abdi, M. R., Zeraatpisheh, M., & Rodrigo-Comino, J. (2021). Impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137Cs techniques. Forest Ecosystems, 8(1), 1-14. doi: https://doi.org/10.1186/s40663-021-00311-1
  6. Davari, M., Gholami, L., Nabiollahi, K., Homaee, M., & Jafari, H. J. (2020). Deforestation and cultivation of sparse forest impacts on soil quality (case study: West Iran, Baneh). Soil and Tillage Research, 198, doi: https://doi.org/10.1016/j.still.2019.104504
  7. Pendall, E., Hewitt, A., Boer, M.M., Carrillo, Y., Glenn, N.F., Griebel, A., Middleton, J.H., Mumford, P.J., Ridgeway, P., Rymer, P.D., & Steenbeeke, G. (2022). Remarkable Resilience of Forest Structure and Biodiversity Following Fire in the Peri-Urban Bushland of Sydney, Australia. Climate, 10(6), 86. doi: https://doi.org/10.3390/cli10060086
  8. Tian, J., He, N., Kong, W., Deng, Y., Feng, K., Green, S. M., ... & Yu, G. (2018). Deforestation decreases spatial turnover and alters the network interactions in soil bacterial communities. Soil Biology and Biochemistry, 123, 80-86. doi: https://doi.org/10.1016/j.soilbio.2018.05.007
  9. Wang, L., Hamel, C., Lu, P., Wang, J., Sun, D., Wang, Y., Lee, S. J., & Gan, G. Y. (2023). Using enzyme activities as an indicator of soil fertility in grassland - an academic dilemma. Frontiers in plant science, 14, doi: https://doi.org/10.3389/fpls.2023.1175946
  10. Hassan, F.O., Abdel-Salam, A.A., Rashed, H.S., & Shalaby, A. (2022). Soil quality assessment of El-Fayoum depression, Egypt, using remote sensing and GIS. Annals of Agricultural Science, Moshtohor, 60(1), 249-258. doi: https://doi.org/10.21608/assjm.2022.227891
  11. Kooch, Y., & Noghre, N. (2020). Nutrient cycling and soil-related processes under different land covers of semi-arid rangeland ecosystems in northern Iran. Catena, 193, 104621. doi: https://doi.org/10.1016/j.catena.2020.104621
  12. Nilsson, M.-C., Wardle, D. A., & Dahlberg, A. (1999). Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos, 16–26. https://doi.org/10.2307/3546566
  13. Bremner, J. M. & Mulvaney, C. S. (1982). Nitrogen-total. In ‘Methods of Soil Analyses. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Madison, 595-624.
  14. Tavakoli, M., Kooch, Y., & Akbarinia, M. (2018a). Frequency and diversity of worms in topsoil of degraded and reclaimed forest habitats of the Caspian region. Iranian Journal of Forest, 10(3), 293-306. [In Persian]. https://www.ijf-isaforestry.ir/article_79991.html
  15. Zancan, S., Trevisan, R. & Paoletti, M. G. (2006). Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agric Ecosystem Environment, 112(1), 1–12. https://doi.org/10.1016/j.agee.2005.06.018
  16. Blake, G. R. & Hartge, K. H. (1986). Particle density. In: Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd ed. SSSA Book Ser. 5. ASA and SSSA, Madison, WI, 377–382.
  17. Pires, L. F., Brinatti, A. M., Saab, S. C., & Cássaro, F. A. M. (2014). Porosity distribution by computed tomography and its importance to characterize soil clod samples. Applied Radiation and Isotopes, 92, 37–45. https://doi.org/10.1016/j.apradiso.2014.06.010
  18. Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 425–442. https://doi.org/10.2136/sssabookser5.1.2ed.c17
  19. Six, J., Callewaert, P., Lenders, S., De Gryze, S., Morris, S.J., Gregorich, E.G., Paul, E.A. & Paustian, K. (2002). Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 66(6), 1981-1987. https://doi.org/10.2136/sssaj2002.1981
  20. Allisson, L. (1965). Organic carbon. Methods of soil analysis, chemical and microbiological properties. Madison: American Society of Agronomy, 1367-1378. https://doi.org/10.2134/agronmonogr9.2.c39
  21. Wang, W. J., & Dalal, R. C. (2006). Carbon inventory for a cereal cropping system under contrasting tillage, nitrogen fertilisation and stubble management practices. Soil and Tillage Research, 91(1-2), 68-74. https://doi.org/10.1016/j.still.2005.11.005
  22. Chapman, H. D., & Pratt, P. F. (1962). Methods of analysis for soils, plants and waters. Soil Science, 93(1), 68.
  23. Bower, C. A., Reitemeier, R. F. & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73, 251-261.
  24. Nelson, D. W. a, & Sommers, L. (1983). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 539–579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  25. Elliott, E. T., & Cambardella, C. A. (1991). Physical separation of soil organic matter. Agriculture, Ecosystems & Environment, 34(1-4), 407-419. https://doi.org/10.1016/0167-8809(91)90124-G
  26. Page, A. L., Miller, R. H., & Jeeney, D. R. (1750). Methods of soil analysis, Part 1. Physical properties. American Society of Agronomy Publication, Madison. 770p.
  27. Jones, D. L., & Willett, V. B. (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 38(5), 991–999. https://doi.org/10.1016/j.soilbio.2005.08.012
  28. Blair, S. N., Kohl, H. W., 3rd, Barlow, C. E., Paffenbarger, R. S., Jr, Gibbons, L. W., & Macera, C. A. (1995). Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA, 273(14), 1093–1098. https://doi:10.1001/jama.1995.03520380029031
  29. Neatrour, M. A., Jones, R. H., & Golladay, S. W. (2005). Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Canadian Journal of Forest Research, 35(12), 2934–2941. https://doi.org/10.1139/x05-217
  30. Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry (Issue 631.46 M592ma). Academic Press. https://www.cabidigitallibrary.org/doi/full/10.5555/19951908199
  31. Bayranvand, M., Kooch, Y. & Rey, A. (2017). Earthworm population and microbial activity temporal dynamics in a Caspian Hyrcanian mixed forest. European Journal of Forest Research, 136(3), 447-456. https://doi.org/10.1007/s10342-017-1044-5
  32. Kooch, Y., B. Samadzadeh and S. M. Hosseini. (2017). The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena, 150(3), 223-229. https://doi.org/10.1016/j.catena.2016.11.023
  33. Neher, D., Wu, J., Barbercheck, M. & Anas, O. (2005). Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology, 30(1), 47-64. https://doi.org/10.1016/j.apsoil.2005.01.002
  34. Adl, M. S., Acosta-Mercado, D., Anderson, R. T., & Lynn, H. D. (2007). Protozoa, supplementary material. Soil sampling and methods of analysis, 2(1), 455-470.
  35. Wollum, A. G. (1982). Cultural methods for soil microorganisms. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 781-802. https://doi.org/10.2134/agronmonogr9.2.2ed.c37
  36. Anderson, T.H. & Domsch, K.H. (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22(2), 251-255. https://doi.org/10.1016/0038-0717(90)90094-G
  37. Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837–842. https://doi.org/10.1016/0038-0717(85)90144-0
  38. Robertson, G. P., Coleman, D. C., Sollins, P., & Bledsoe, C. S. (1999). Standard soil methods for long-term ecological research (Vol. 2). Oxford University Press on Demand. 480p.
  39. Singh, J.S., Singh, D.P. & Kashyap, A.K. (2009). A comparative account of the microbial biomass-N and N-mineralization of soils under natural forest, grassland and crop field from dry tropical region, India. Plant Soil Environment, 55(6), 223-230. doi: 10.17221/1021-PSE
  40. Wang, Q., Xiao, F., He, T., & Wang, S. (2010). Responses of labile soil organic carbon and enzyme activity in mineral soils to forest conversion in the subtropics. Annals of Forest Science, 70, 579–587. https://doi.org/10.1007/s13595-013-0294-8
  41. López‐Vicente, M., Calvo-Seas, E., Álvarez, S., & Cerdà, A. (2020). Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard. Land, 9, doi: https://doi.org/10.3390/land9070230
  42. Chandra, L. R., Gupta, S., Pande, V., & Singh, N. (2016). Impact of forest vegetation on soil characteristics: a correlation between soil biological and physico-chemical properties. 3 Biotech, 6, 1-12. doi: https://doi.org/10.1007/s13205-016-0510-y
  43. Pérez‐Corona, M.E., Hernández, M.C.P. & de Castro, F.B. (2006). Decomposition of alder, ash, and poplar litter in a Mediterranean riverine area. Communications in Soil Science and Plant Analysis, 37(7-8), 1111-1125. doi: https://doi.org/10.1080/00103620600588496
  44. Liu, X., Tang, X., Lie, Z., He, X., Zhou, G., Yan, J., ... & Liu, J. (2022). Tree species richness as an important biotic factor regulates the soil phosphorus density in China's mature natural forests. Science of the Total Environment, 845, doi: https://doi.org/10.1016/j.scitotenv.2022.157277
  45. Asmare, T. K., Abayneh, B., Yigzaw, M., & Birhan, T. A. (2023). The effect of land use type on selected soil physicochemical properties in Shihatig watershed, Dabat district, Northwest Ethiopia. Heliyon, 9(5), e16038. DOI: https://doi.org/10.1016/j.heliyon.2023.e16038
  46. Devi, S.S., Devi, L.S., & Yadava, P.S. (2007). Floristic diversity assessment and vegetation analysis of tropical semievergreen forest of Manipur, north east India. https://api.semanticscholar.org/CorpusID:30392294
  47. Braos, L. B., Carlos, R. S., Bettiol, A. C. T., Bergamasco, M. A. M., Terçariol, M. C., Ferreira, M. E., & da Cruz, M. C. P. (2023). Soil Carbon and Nitrogen Forms and Their Relationship with Nitrogen Availability Affected by Cover Crop Species and Nitrogen Fertilizer Doses. Nitrogen, 4(1), 85-101. doi: https://doi.org/10.3390/nitrogen4010007
  48. Tolessa, T., & Senbeta, F. (2018). The extent of soil organic carbon and total nitrogen in forest fragments of the central highlands of Ethiopia. Journal of Ecology and Environment, 42, 1-11. doi: https://doi.org/10.1186/s41610-018-0081-4
  49. Kooch, Y. (2012). Soil variability related to pit and mound, canopy cover and individual trees in a Hyrcanian Oriental Beech stand. Ph.D. Thesis, Tarbiat Modares University, 203p. doi: https:// 1007/s10342-013-0766-2
  50. Adugna, A., & Abegaz, A. (2016). Effects of land use changes on the dynamics of selected soil properties in northeast Wellega, Ethiopia. Soil, 2(1), 63-70. doi: http://dx.doi.org/10.5194/soild-2-1075-2015
  51. Swanson, M. E., Studevant, N. M., Campbell, J. L., & Donato, D. C. (2014). Biological associates of early-seral pre-forest in the Pacific Northwest. Forest Ecology and Management, 324, 160-171. doi: https://doi.org/10.1016/j.foreco.2014.03.046
  52. Kooch, Y. (2012). Soil variability related to pit and mound, canopy cover and individual trees in a Hyrcanian Oriental Beech stand. Phd Thesis, Tarbiat Modares University, 203p. [In Persian].
  53. Luo, G., Xue, C., Jiang, Q., Xiao, Y., Zhang, F., Guo, S., Shen, Q., & Ling, N. (2020). Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C: N: P stoichiometry. Msystems, 5(3), e00162-20. doi: https://doi.org/10.1128/msystems.00162-20
  54. Molla, E., Getnet, K., & Mekonnen, M. (2022). Land use change and its effect on selected soil properties in the northwest highlands of Ethiopia. Heliyon, 8(8), e10157. doi: https://doi.org/10.1016/j.heliyon.2022.e10157
  55. Kemmitt, S. J., Wright, D., Goulding, K. W., & Jones, D. L. (2006). pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry, 38(5), 898-911. doi: https://doi.org/10.1016/j.soilbio.2005.08.006
  56. Mulugeta, T., Melese, A., & Wondwosen, T. E. N. A. (2019). Effects of land use types on selected soil physical and chemical properties: The case of Kuyu District, Ethiopia. Eurasian journal of soil science, 8(2), 94-109. doi: 10.18393/ejss.510744
  57. Kalambukattu, J. G., Singh, R., Patra, A. K., & Arunkumar, K. (2013). Soil carbon pools and carbon management index under different land use systems in the Central Himalayan region. Acta Agriculture Scandinavica, Section B–Soil & Plant Science, 63(3), 200-205. doi: https://doi.org/10.1080/09064710.2012.749940
  58. Abera, Y., & Bilachew, T. (2011). Effects of land use on soil organic carbon and nitrogen in soils of Bale, Southern Ethiopian. Tropical and Subtropical Agroecosystems, 14(1), 229-235. doi: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v14i1.538
  59. Tellen, V. A., & Yerima, B. P. (2018). Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environmental systems research, 7(1), 1-29. doi: https://doi.org/10.1186/s40068-018-0106-0
  60. Chen, C. R., Condron, L. M., Davis, M. R., & Sherlock, R. R. (2001). Effects of land-use change from grassland to forest on soil sulfur and arylsulfatase activity in New Zealand. Soil research, 39(4), 749-757. doi: https://doi.org/10.1071/SR00032
  61. Moghimian, N., Hosseini, S. M., Kooch, Y., & Darki, B. Z. (2017). Impacts of changes in land use/cover on soil microbial and enzyme activities. Catena, 157, 407-414. doi: https://doi.org/10.1016/j.catena.2017.06.003
  62. Buraka, T., Elias, E., & Lelago, A. (2023). Effects of land-use-cover-changes on selected soil physicochemical properties along slope position, Coka watershed, Southern Ethiopia. Heliyon, 9(5). e16142. doi: https://doi.org/10.1016/j.heliyon.2023.e16142
  63. Qi, L. H., Peng, Z. H., Zhang, X. D., Zhou, J. X., Cai, C. J., & Wang, Z. Y. (2007). Species diversity and biomass allocation of vegetation restoration communities on degraded lands. Chinese Journal of Ecology, 26(11), 1697-1702. http://www.cje.net.cn/EN/volumn/volumn_304.shtml
  64. de Pierri Castilho, S. C., Cooper, M., Dominguez, A., & Bedano, J. C. (2016). Effect of land use changes in eastern amazonia on soil chemical, physical, and biological attributes. Soil Science, 181(3/4), 133-147. doi: 10.1097/SS.0000000000000152
  65. Vanolli, B. S., Pereira, A. P., Franco, A. L., & Cherubin, M. R. (2023). Edaphic and epigeic macrofauna responses to land use change in Brazil. European Journal of Soil Biology, 117, doi: https://doi.org/10.1016/j.ejsobi.2023.103514
  66. Persaud, R. (2019). Impact of deforestation on earthworm populations in Guyana's rainforests (No. e27841v1). PeerJ Preprints, 7, e27841v1. doi: https://doi.org/10.7287/peerj.preprints.27841v1
  67. Sirajul Haque, S. M., Gupta, S. D., & Miah, S. (2014). Deforestation effects on biological and other important soil properties in an upland watershed of Bangladesh. Journal of Forestry Research, 25, 877-885. doi: https://doi.org/10.1007/s11676-014-0534-2
  68. Borah, M. I. N. A. T. I., & Kakati, L. N. (2013). Abundance and distribution of soil Acarina in natural and degraded forest ecosystems at Pathalipam, Lakhimpur, Assam. International Journal of Scientific & Engineering Research, 12, 1694-1709. doi: http://dx.doi.org/10.9790/2402-08134550
  69. da Silva, P. M., Bartz, M., Mendes, S., Boieiro, M., Timóteo, S., Azevedo-Pereira, H. M., ... & Sousa, J. P. (2023). Tree canopy enhances Collembola functional richness and diversity across typical habitats of the Gorongosa National Park (Mozambique). Applied Soil Ecology, 190, doi: https://doi.org/10.1016/j.apsoil.2023.105010
  70. Afzal, S., Nesar, H., Imran, Z., & Ahmad, W. (2023). Change in land-use from natural forest impacts functional composition and metabolic footprint of soil nematode community in Western Himalayas. Acta Ecologica Sinica, 43(5), 842-852. doi: https://doi.org/10.1016/j.chnaes.2022.12.004
  71. Han, X., Liang, Z., Wang, M., Chen, Y., Hu, C., & Wu, S. (2013). Effect of agricultural land use types on soil protozoa community. Journal of Henan Agricultural Sciences, 42(9), 54-57. https://www.cabidigitallibrary.org/doi/full/10.5555/20133388292
  72. Fan, L. C., Yang, M. Z., & Han, W. Y. (2015). Soil respiration under different land uses in eastern China. PloS one, 10(4), e0124198. doi: https://doi.org/10.1371/journal.pone.0124198
  73. Chen, Q., Yang, F., & Cheng, X. (2022). Effects of land use change type on soil microbial attributes and their controls: Data synthesis. Ecological Indicators, 138, doi: https://doi.org/10.1016/j.ecolind.2022.108852
  74. Kara, O., & Bolat, I. (2008). The effect of different land uses on soil microbial biomass carbon and nitrogen in Bartın province. Turkish Journal of Agriculture and Forestry, 32(4), 281-288. https://journals.tubitak.gov.tr/agriculture/vol32/iss4/6/
  75. Li, M., Zhou, X., Zhang, Q. & Cheng, X. (2014). Consequences of afforestation for soil nitrogen dynamics in Central China. Agriculture, Ecosystems and Environment, 183(4), 40-46. doi: https://doi.org/10.1016/j.agee.2013.10.018
  76. Ferreira, A. C. C., Leite, L. F. C., Araújo, A. S. F. & Eisenhauer, N. (2016). Land use type effects on soil organic Carbon and microbial properties in a semi-arid region of Northeast Brazil. Land Degradation and Development, 27(2): 171-178.‏ doi: https://doi.org/10.1002/ldr.2282
  77. Kooch, Y. and Bayranvand, M. (2017). Composition of tree species can mediate spatial variability of C and N cycles in mixed beech forests. Forest Ecology and Management, 401(10):55-64.
  78. Koudahe, K., Allen, S. C., & Djaman, K. (2022). Critical review of the impact of cover crops on soil properties. International Soil and Water Conservation Research, 10(3), 343-354. doi: https://doi.org/10.1016/j.iswcr.2022.03.003
  79. 79. Zhu, G., Shangguan, Z., Hu, X., & Deng, L. (2021). Effects of land use changes on soil organic carbon, nitrogen and their losses in a typical watershed of the Loess Plateau, China. Ecological Indicators, 133, doi: https://doi.org/10.1016/j.ecolind.2021.108443