1.Maleki, M., Ebrahimi, S., Asadzadeh, F. & Emami Tabrizi, M. (2016). Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. International Journal of Environmental Science and Technology, 13, 937-944. doi: 10.1007/s13762-015-0921-z
- Nikseresht, F., Landi, A., Sayyad, G., Ghezelbash, G.R. & Schulin, R. (2020). Sugarecane molasse and vinasse added as microbial growth substrates increase calcium carbonate content, surface stability and resistance against wind erosion of desert soils. Journal of Environmental Management, 268, p.110639. doi: 10.1016/j.jenvman.2020.110639
- Keramat, A., Marivani, B., & Samsami, M. (2011). Climatic change, drought and dust crisis in Iran. WASET 6, 3–10.
- Broomandi, P., Dabir, B., Bonakdarpour, B., & Rashidi, Y. (2017). Identification of the sources of dust storms in the City of Ahvaz by HYSPLIT. Pollution, 3(2), 341–348. doi: 10.7508/PJ.2017.02. 015
- Anderson, J., Bang, S., Bang, S.S., Lee, S.J., Choi, S.R. & Dho, N.Y. (2014). Reduction of wind erosion potential using microbial calcite and soil fibers. In Geo-Congress 2014: Geo-characterization and Modeling for Sustainability(pp. 1664-1673). Doi: 10.1061/9780784413272.163
- Goudie, A.S., & Middleton, N.J. 2006. Desert dust in the global system. Springer, NewYork, USA.
- Gadi, V.K., Bordoloi, S., Garg, A., Kobayashi, Y., & Sahoo, L., (2016). Improving and correcting unsaturated soil hydraulic properties with plant parameters for agriculture and bioengineered slopes. Rhizosphere, 1, 58-78. doi:10.1016/j.rhisph.2016.07.003
- Karol, R.H., (2003). Chemical grouting and soil stabilization. Marcel Dekker, New York, USA.
- Deléglise, C., Loucougaray, G., & Alard, D. (2011). Effects of grazing exclusion on the spatial variability of subalpine plant communities: a multiscale approach. Basic and Applied Ecology, 12(7), pp.609-619. doi.org/10.1016/j.baae.2011.08.006
- Verdoodt, A., Mureithi, S.M., Ye, L., & Van Ranst, E. (2009). Chronosequence analysis of two enclosure management strategies in degraded rangeland of semi-arid Kenya. Agriculture, ecosystems & environment, 129(1-3), 332-339. doi: 10.1016/j.agee.2008.10.006.
- Zomorodian, S.M.A., Ghaffari, H., & O'Kelly, B.C. (2019). Stabilisation of crustal sand layer using biocementation technique for wind erosion control. Aeolian Research, 40, 34-41. doi: 10.1016/j.aeolia.2019.06.001.
- Meyer, F.D., Bang, S., Min, S., Stetler, L.D., & Bang, S.S. (2011). Microbiologically-induced soil stabilization: application of Sporosarcina pasteurii for fugitive dust control. In Geo-frontiers 2011: Advances in Geotechnical Engineering(pp. 4002-4011). doi: 10.1061/41165(397)409.
- Sharma, M., Satyam, N., & Reddy, K.R. (2021a). Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions. Journal of Rock Mechanics and Geotechnical Engineering, 13(3), 705-716. doi: 10.1016/j.jrmge.2020.11.006
- Sun, X., Miao, L., Tong, T., & Wang, C. (2019). Study of the effect of temperature on microbially induced carbonate precipitation. Acta Geotechnica, 14, 627-638. doi: 10.1007/s11440-018-0758-y
- Chou, C.W., Seagren, E.A., Aydilek, A.H., & Lai, M. (2011). Biocalcification of sand through ureolysis. Journal of Geotechnical and Geoenvironmental Engineering, 137(12), 1179-1189. doi: 10.1061/(ASCE)GT.1943-5606.0000532.
- Tiwari, N., Satyam, N., & Sharma, M. (2021). Micro-mechanical performance evaluation of expansive soil biotreated with indigenous bacteria using MICP method. Scientific Reports, 11(1), p.10324. doi: 10.1038/s41598-021-89687-2
- Whiffin, V.S., Van Paassen, L.A., & Harkes, M.P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423.doi: 10.1080/01490450701436505
- Al-Thawadi, S., (2008). High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria (Doctoral dissertation, Murdoch University).
- Sharma, M., Satyam, N., and Reddy, K.R., (2021b). Hybrid bacteria mediated cemented sand: Microcharacterization, permeability, strength, shear wave velocity, stress-strain, and durability. International Journal of Damage Mechanics, 30(4), 618-645. doi: 10.1177/1056789521991196
- Moravej, S., Habibagahi, G., Nikooee, E. and Niazi, A., (2018). Stabilization of dispersive soils by means of biological calcite precipitation. Geoderma, 315, 130-137. doi:10.1016/j.geoderma.2017.11.037.
- Bu, C., Wen, K., Liu, S., Ogbonnaya, U., & Li, L., (2018). Development of bio-cemented constructional materials through microbial induced calcite precipitation. Materials and Structures, 51, 1-11. doi: 10.1617/s11527-018-1157-4.
- Poulsen, T.G., Cai, W., & Garg, A. (2020). Water evaporation from cracked soil under moist conditions as related to crack properties and near‐surface wind speed. European Journal of Soil Science, 71(4), 627-640. doi:10.1111/ejss.12926
- Mujah, D., Shahin, M.A., & Cheng, L. (2017). State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiology Journal, 34(6), 524-537. doi: 10.1080/01490451.2016.1225866.
- Liang, S., Chen, J., Niu, J., Gong, X., & Feng, D. (2020). Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation. Marine Georesources & Geotechnology, 38(4), 393-399. doi:10.1080/1064119X.2019.1575939
- Choi, S.G., Chu, J., Brown, R.C., Wang, K., & Wen, Z. (2017). Sustainable biocement production via microbially induced calcium carbonate precipitation: Use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass. ACS Sustainable Chemistry & Engineering, 5(6), 5183-5190. doi:10.1021/acssuschemeng.7b00521
- Gowthaman, S., Nawarathna, T.H.K., Nayanthara, P.G.N., Nakashima, K., & Kawasaki, S. (2021). The amendments in typical microbial induced soil stabilization by low-grade chemicals, biopolymers and other additives: A review. Building Materials for Sustainable and Ecological Environment, 49-72.doi: 10.1007/978-981-16-1706-5_4
- Dargahian, F., Loftinasabasl, S., & Khosroshahi, M. 2018. Analysis of the role of internal dust sources in creating critical conditions in Ahvaz with an emphasis on the southeastern area. Iranian Journal of Forest and Range Protection Research, 16(32): 157-170. doi:10.22092/ijfrpr.2018.110809.1277
- Rajasekar, A., Zhao, C., Wu, S., Murava, R.T., & Wilkinson, S. 2024. Synergistic biocementation: harnessing Comamonas and Bacillus ureolytic bacteria for enhanced sand stabilization. World Journal of Microbiology and Biotechnology, 40(7), p.229.doi:10.1007/s11274-024-04038-3
- Harkes, M.P., Van Paassen, L.A., Booster, J.L., Whiffin, V.S., & van Loosdrecht, M.C., (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112-117. doi:10.1016/j.ecoleng.2009.01.004
- Whiffin, V.S., (2004). Microbial CaCO3 precipitation for the production of biocement (Doctoral dissertation, Murdoch University).
- Sarikhani, M.R., & Moradi, Sh. (2015). Measurement of urease activity of several microbial species by electrical conductivity and Nessler's method. 14th Iranian Soil Science Congress. Rafsanjan.
- Katra, I. (2020). Soil erosion by wind and dust emission in semi-arid soils due to agricultural activities. Agronomy, 10(1): 89. doi:10.3390/agronomy10010089
- Lapierre, F.M. and Huber, R., 2024. Revisiting the urease production of MICP-relevant bacterium Sporosarcina pasteurii during cultivation. Biocatalysis and Agricultural Biotechnology, 55, p.102981. doi:10.1016/j.bcab.2023.102981
- 34. Mazzei, L., Musiani, F. and Ciurli, S., 2020. The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. JBIC Journal of Biological Inorganic Chemistry, 25(6), 829-845. doi:1007/s00775-020-01808-w
- Dhami, N.K., Reddy, M.S., & Mukherjee, A. (2013) Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology & Biotechnology, 23:707–714.doi:10.4014/jmb.1212.11087
- Dhami, N.K., Reddy, M.S., & Mukherjee, A. (2014) Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Applied Biochemistry & Biotechnology, 172:2552–2561.doi:10.1007/s12010-013-0694-0
- Achal, V. and Pan, X., 2014. Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Applied biochemistry and biotechnology, 173, pp.307-317. doi:10.1007/s12010-014-0842-1
- Anbu, P., Kang, C.H., Shin, Y.J. and So, J.S., 2016. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus, 5, pp.1-26.
- McConnaughey, T.A., & Whelan, J.F. (1997). Calcification generates protons for nutrient and bicarbonate uptake. Earth-Science Reviews, 42(1-2), 95-117.
- Hammes, F., Boon, N., de Villiers, J., Verstraete, W., & Siciliano, S.D. (2003). Strain-specific ureolytic microbial calcium carbonate precipitation. Applied and environmental microbiology, 69(8), 4901-4909. doi: 10.1128/AEM.69.8.4901-4909.2003
- Warthmann, R., Van Lith, Y., Vasconcelos, C., McKenzie, J.A., & Karpoff, A.M. (2000). Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28(12), 1091-1094. doi:10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2
- Arias, J.L., & Fernández, M.S. (2008). Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chemical reviews, 108(11), 4475-4482. doi:10.1021/cr078269p
- Datta, S., Manna, S., & Roy, D. (2022). Attachment of extracellular metabolic products of lysinibacillus sp. DRG3 on sand surface under variable flow velocities and bioprocesses. Journal of Environmental Engineering, 148(11), p.04022069.
- Xiao, Y., He, X., Zaman, M., Ma, G., & Zhao, C. (2022). Review of strength improvements of biocemented soils. International Journal of Geomechanics, 22(11), p.03122001. doi:10.1061/(ASCE)GM.1943-5622.0002565
- Achal, V., Mukherjee, A., Basu, P.C., & Reddy, M.S. (2009). Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. Journal of industrial Microbiology and Biotechnology, 36(7), 981-988.doi:10.1007/s10295-009-0578-z
- DeJong, J.T., Fritzges, M.B., & Nüsslein, K. (2006). Microbially induced cementation to control sand response to undrained shear. Journal of geotechnical and geoenvironmental engineering, 132(11), 1381-1392. doi:10.1061/(ASCE)1090-0241(2006)132:11(1381)
- Lian, B., Hu, Q., Chen, J., Ji, J., & Teng, H.H. (2006). Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochimica et cosmochimica acta, 70(22), 5522-5535. doi:10.1016/j.gca.2006.08.044
- Dhami, N.K., Reddy, M.S., & Mukherjee, A. (2013) Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology & Biotechnology, 23:707–714.doi:10.4014/jmb.1212.11087
- Dhami, N.K., Reddy, M.S., & Mukherjee, A. (2014) Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Applied Biochemistry & Biotechnology, 172:2552–2561. doi:10.1007/s12010-013-0694-0
- Zhang, C., Yin, L., Ou, Y., Yang, G., Huang, L., & Li, F. (2021). Contribution of selective bacterial extracellular polymeric substances to the polymorphism and morphologies of formed Ca/Mg carbonates. International Biodeterioration & Biodegradation, 160, p.105213.doi:10.1016/j.ibiod.2021.105213
- Okwadha, G.D., & Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81(9), 1143-1148. doi:10.1016/j.chemosphere.2010.09.066
- De Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: a review. Ecological engineering, 36(2), 118-136. doi:10.1016/j.ecoleng.2009.02.006
53.Rao, M.S., Reddy, V.S., & Sasikala, C. (2017). Performance of microbial concrete developed using bacillus subtilus JC3. Journal of The Institution of Engineers (India): Series A, 98, 501-510.
54.Lee, C., Lee, H., & Kim, O.B. (2018). Biocement fabrication and design application for a sustainable urban area. Sustainability, 10(11), p.4079. doi:10.3390/su10114079
- Zhao Y., Xiao, Z., Lv, J., Shen, W., & Xu, R. (2019). A novel approach to enhance the urease activity of Sporosarcina pasteurii and its application on microbial-induced calcium carbonate precipitation for sand. Geomicrobiology, 36, 819–825. doi:10.1080/01490451.2019.1631911
56.Konstantinou, C., Wang, Y., Biscontin, G., & Soga, K. (2021). The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of bio-treated coarse sand specimens. Science Report. 11, 6161.
- Pourjasem, L., Landi, A., Enayatizamir, N., & Hojati, S. (2020). The release of some elements from vermiculite during the short periods of incubation by heterotrophic bacteria. Eurasian Soil Science, 53, 223-229. doi:10.1134/S106422932002009X
58.Gurbuz, A., Sari, Y.D., Yuksekdag, Z.N., & Cinar, B., (2011). Cementation in a matrix of loose sandy soil using biological treatment method. African Journal of Biotechnology, 10(38), 7432-7440.
59.Li, M., Li, L., Ogbonnaya, U., Wen, K., Tian, A., & Amini, F. (2016). Influence of fiber addition on mechanical properties of MICP-treated sand. Journal of Materials in Civil Engineering, 28(4), p.04015166. doi:10.1061/(ASCE)MT.1943-5533.0001442
60.Chahal, N., Siddique, R., & Rajor, A. (2012a). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Construction and Building Materials, 28(1), pp.351-356. doi:10.15224/978-1-63248-062-0-28
61.Andalib, R., Abd Majid, M.Z., Hussin, M.W., Ponraj, M., Keyvanfar, A., Mirza, J., & Lee, H.S. (2016). Optimum concentration of Bacillus megaterium for strengthening structural concrete. Construction and Building Materials, 118, pp.180-193. doi:10.3221/IGF-ESIS.59.32
62.Shukla, A., Gupta, N., Singh, K.R., Kumar Verma, P., Bajaj, M., Khan, A.A., & Ayalew, F. (2022). Performance evaluation of bio concrete by cluster and regression analysis for environment protection. Computational Intelligence and Neuroscience, 2022(1), p.4411876. doi:10.1155/2022/4411876
63.Dubey, A.A., Devrani, R., Ravi, K., Dhami, N.K., Mukherjee, A., & Sahoo, L. (2021). Experimental investigation to mitigate aeolian erosion via biocementation employed with a novel ureolytic soil isolate. Aeolian Research, 52, p.100727. doi:10.1016/j.aeolia.2021.100727
64.Wang, Z., Zhang, N., Ding, J., Lu, C., & Jin, Y. (2018). Experimental study on wind erosion resistance and strength of sands treated with microbial-induced calcium carbonate precipitation. Advances in Materials Science and Engineering, 2018. doi:10.1155/2018/3463298
65.Gomez, M.G., Martinez, B.C., DeJong, J.T., Hunt, C.E., deVlaming, L.A., Major, D.W., & Dworatzek, S.M. (2015). Field-scale bio-cementation tests to improve sands. Proceedings of the Institution of Civil Engineers-Ground Improvement, 168(3), pp.206-216.
66.Meng, H., Gao, Y., He, J., Qi, Y., & Hang, L. (2021). Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests. Geoderma, 383, p.114723.doi: 10.1016/j.geoderma.2020.114723
67.Coban, O., De Deyn, G.B., & van der Ploeg, M. (2022). Soil microbiota as game-changers in restoration of degraded lands. Science, 375(6584), p.abe0725. doi:10.1126/science.abe0725