تاثیر کاربری اراضی و مواد مادری بر آلودگی خاک‌های سطحی شمال استان خوزستان به عناصر سرب و مس

نوع مقاله: مقاله پژوهشی

نویسنده

دانشگاه شهید چمران اهواز

چکیده

سابقه و هدف: طی چند دهه اخیر افزایش فعالیت‌های صنعتی و استفاده بی رویه از آفت‌کش‌ها و حشره‌کش‌ها (جهت کنترل بیماریهای گیاهی)، کودهای شیمیایی و ضایعات آلی صنعتی جهت افزایش سطح تولید در مناطق شمالی استان خوزستان که قطب کشاورزی استان نیز به شمار می‌رود نگرانی‌های زیادی را در رابطه با انباشت فلزات سنگین در خاک‌های این مناطق باعث شده است. این مطالعه با هدف بررسی تأثیر کاربری اراضی و مواد مادری بر پراکنش عناصر مس و سرب در استان خوزستان و تعیین نقاط بحرانی و آلوده به این فلزات انجام شد.
مواد و روش‌ها: تعداد 300 نمونه مرکب به صورت تصادفی و با فواصل کم، متوسط و زیاد به ترتیب در مناطق شهری، کشاورزی، مرتعی و جنگلی از خاک‌های سطحی (10-0 سانتی‌متری) منطقه شامل شهرستان‌های شوشتر، شوش، ایذه، باغ ملک، اندیکا، گتوند، دزفول، مسجد سلیمان، لالی و اندیمشک تهیه شد. همچنین با توجه به نقشه‌های زمین شناسی و مشاهدات صحرایی و به منظور بررسی اثر مواد مادری بر توزیع عناصر مورد مطالعه در مجموع تعداد 26 نمونه از منطقه برداشت شد. سپس ویژگی‌های فیزیکی و شیمیایی نمونه‌ها پس از انتقال به آزمایشگاه و آماده‌سازی‌های اولیه بر روی آنها به استفاده از روش‌های استاندارد آزمایشگاهی تعیین شد. غلظت کل عناصر سرب و مس نمونه‌ها نیز با استفاده از دستگاه جذب اتمی واریان مدل A240 مجهز به کوره گرافیتی اندازه‌گیری شد.
یافته ها: نتایج نشان دادند که بیشترین غلظت کل عناصر سرب و مس مربوط به اراضی با کاربری صنعتی است و کاربری‌های شهری، کشاورزی، مرتعی و جنگلی از این حیث در رتبه‌های بعدی قرار می‌گیرند. مقایسه غلظت کل عناصر مورد مطالعه با استاندارد کشورهای مختلف نیز حاکی از عدم آلودگی خاک‌های منطقه به این عناصر می‌باشد. لیکن اراضی با کاربری صنعتی در شرایط نزدیک-تری به حدود بحرانی ارائه شده توسط کشورهای مختلف قرار دارند. بیشترین مقادیر شاخص‌های زمین انباشت، فاکتور آلودگی و شاخص جامع آلودگی درکاربری‌های صنعتی و شهری مشاهده گردید و اراضی با کاربری کشاورزی، مرتعی و جنگلی به ترتیب در رتبه‌های بعدی قرار گرفتند. بررسی تأثیر مواد مادری بر پراکنش عناصر سرب و مس در منطقه نشان داد که بعد از شیل‌ها، بیشترین فراوانی این عناصر به صورت مارن > رسوبات تفکیک نشده > ماسه سنگ > سنگ آهک است. همچنین مقایسه غلظت کل عناصر سنگین سرب و مس در خاک‌ها و مواد مادری مورد مطالعه حاکی از فزونی غلظت این عناصر در خاک‌ها از مواد مادری متناظر آنها است.
نتیجه گیری: مقایسه غلظت عناصر سرب و مس در خاک‌ها و مواد مادری مورد مطالعه به همراه نتایج به دست آمده از مقایسه غلظت عناصر سنگین در کاربری‌های مطالعه شده به خوبی نشان می‌دهد که پراکنش فلزات سرب و مس در منطقه مطالعاتی متاثر از هر دو عامل زمین زاد و انسان زاد می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of land use and parent materials on pollution of surface soils to lead and copper in North of Khuzestan Province

چکیده [English]

Introduction: Due to the intensified industrial activities and excessive application of pesticides and insecticides as well as fertilizers and industrial organic waste over the last few decades, there has been a great deal of concern about the accumulation of heavy metals in soils across the northern parts of Khuzestan Province as the agriculture hub of the province. This study attempted to examine the effect of land uses and soil parent materials on spatial variability of copper and lead elements and to specify the critical points (hotspots) contaminated with these metals across the northern parts of Khuzestan Province.
Materials and Methods: A total number of 300 composite soil samples (0-10 cm) were collected randomly at short, medium and long intervals across urban, agricultural and natural areas in north of Khuzestan, respectively; covering several cities including Shushtar, Shush, Izeh, Bagh Malek, Andika, Gotvand, Dezful, Masjed Soleiman, Lali and Andimeshk. Moreover, 26 samples were retrieved from the region in order to evaluate the effect of parent materials. Then, the physical and chemical properties of samples were specified after transporting them to the laboratory and preliminary arrangements under standard procedures. Furthermore, the total concentrations of lead and copper were measured using Varian A240 atomic absorption spectrometer (AAS) equipped with a graphite furnace.
Results and Discussion: The results indicated that the maximum of total concentrations of lead, and copper were found in lands with industrial use, while the urban, agricultural, pasture and forest land uses accounted for the next values. When the total concentrations of these elements compared with the safe limits suggested by other countries, it was understood that the soils were not contaminated with lead and copper elements. However, the lands with industrial use were closer to critical levels. The greatest values of geoaccumulation index (Igeo) were found in industrial and urban land uses, whereas lands under agriculture, pasture and forest uses took up the lower ranks, respectively. Examination of the effect of parent materials on the distribution of lead, and copper across the study area demonstrated that the highest concentration of these elements could be arranged as shales > marl > indiscriminate sediment > sandstone > limestone. Besides, the comparison of total concentrations of heavy metals lead, and copper in soils and corresponding parent materials revealed that the concentrations of these elements were greater in soils as compared to those in the parent materials.
Conclusion: When concentrations of lead and copper in soils and parent materials, and in the land uses are compared, it could be concluded that both anthropogenic and geogenic sources have contributed to the distribution of lead and copper in the study area.

کلیدواژه‌ها [English]

  • Anthropogenic
  • geogenic
  • shale
  • geo-accumulation index
1.Adriano, D.C. 2001. Trace elements in terrestrial environments, biogeochemistry,
bioavailability and risks of metals. Second edition. Springer, 796p.
2.Afshari, A., Khademi, H., and Hojati, S. 2016. Assessment of heavy metals pollution risk in
soils of central Zanjan province based on pollution indices. J. Water Soil Cons. 22: 6. 21-40.
3.Afyuni, M. 2014. Quality standards and guidelines of soil resources. Iranian Department of
Environment, Tehran, 166p.
4.Alloway, B.J. 1990. Heavy metals in soils. Blackie and Son Ltd. Glasgow and London, 339p.
5.Barzin, M., Kheyrabadi, H., and Afyuni, M. 2015. An Investigation into pollution of selected
heavy metals of surface soils in Hamadan province using pollution index. J. Water. Soil Sci.
19: 72. 69-80.
6.Bhuiyan, M.A.H., Parvez, L., Islam, M.A., Dampare, S.B., and Suzuki, S. 2010. Heavy metal
pollution of coal mine-affected agricultural soils in the northern part of Bangladesh.
J. Hazard. Mater. 173: 384-392.
7.Blaster, P., Zimmermann, S., Luster, J., and Shotyk, W. 2000. Critical examination of trace
element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb and Zn in Swiss forest soils.
Sci. Total Environ. 249: 257-280.
8.Cabrera, F., Clemente, L., Barrientos, E.D., Lopez, R., and Murillo, J.N. 1999. Heavy metal
pollution of soils as affected by the Guadiamar toxic flood. Sci. Total Environ. 242: 117-129.
9.Chamannejadian, A., Moezzi, A.A., Sayyad, G., Jahangiri, A., and Jafarnejadi, A. 2011.
Spatial Distribution of Lead in Calcareous soils and rice seeds of Khuzestan, Iran. Malaysian
J. Soil Sci. 15: 115-125.
10.Dankub, Z., Ayoubi, Sh., Khademi, H., and Lu, S.G. 2011. Spatial Distribution of Magnetic
Properties and Selected Heavy Metals as Affected by Land Use in Calcareous Soils of the
Isfahan Region, Central Iran. Pedosphere. 22: 33-47.
11.Gee, G.W., and Bauder, J.W. 1996. Particle-size analysis. P 383-411, In: A. Klute (Ed.),
Methods of Soil Analysis Part 1: Physical and Mineralogical Methods. Soil Science Society
of America and America Society of Agronomy, Madison, WI, USA.
12.Ghorbani, H., Hafezi Moghaddas, N., and Kashi, H. 2015. Effects of land use on the
concentrations of some heavy metals in soils of Golestan province, Iran. J. Agric. Sci.
Technol. 17: 1025-1040.
13.Guan, Y., Shao, C., and Ju, M. 2014. Heavy metals contamination assessment and partition
for industrial and mining gathering areas. Inter. J. Environ. Res. Pub. Health. 11: 7286-7303.
14.He, Z.L., Yang, X.E., and Stoffella, P.J. 2005. Trace elements in agro -ecosystems and
impacts on the environment: A review. J. Trace Elem. Med. Biol. 19: 125-140.
15.Irmak, S., and Surucu, K. 1999. Effects of different parent materials on some plant nutrients
and heavy metals in the arid regions of Turkey. P 289-291, In: D. Anac and P. Martin-Prevel
(Eds.), Improved Crop Quality by Nutrient Management. Developments in Plant and Soil
Sciences, Springer, Netherlands.
16.Jafarnejadi, A., Sayyad, G., Homaee, M., and Davamei, A.H. 2013. Spatial variability of soil
total and DTPA extractable cadmium caused by long-term application of phosphate
fertilizers, crop rotation and soil characteristics. Environ. Monitor. Assess. 185: 4087-4096.
17.Karimi, A., Haghnia, G.H., Ayoubi, Sh., and Safari, T. 2017. Impacts of geology and land
use on magnetic susceptibility and selected heavy metals in surface soils of Mashhad plain,
northeastern Iran. Applied Geophysics. 138: 127-134.
18.Khodakarami, L., Soffianian, A., Mirghafari, N., Afyuni, M., and Golshahi, A. 2012.
Concentration zoning of chromium, cobalt and nickel in the soils of three sub-basin of the
Hamadan province using GIS technology and the geostatistic. J. Water. Soil Sci. 15: 58. 243-254.
19.Liang, J., Feng, C., Zeng, G., Gao, X., Zhong, M., Li, X., Li, X., He, X., and Fang, Y. 2017.
Spatial distribution and source identification of heavy metals in surface soils in a typical coal
mine city, Lianyuan, China. Environ. Poll. 225: 681-690.
20.Loeppert, R.H., and Suarez, D.L. 1996. Carbonate and gypsum. P 417-436, In: D.L. Sparks,
A.L. Page, P.A. Helmke, R.H. Leoppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston
and M.E. Sumner (Eds.), Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science
Society of America and American Society of Agronomy, Madison, USA.
21.Luo, L., Ma, Y., Zhang, S., Wei, D., and Zhu, Y. 2009. An inventory of trace element inputs
to agricultural soils in China. J. Environ. Manage. 90: 2524-2530.
22.Martin, C.W. 2000. Heavy metal trends in floodplain sediments and valley fill, River Lahn,
Germany. Catena. 39: 53-68.
23.Muller, G. 1969. Index of geoaccumulation in sediment of the Rhine River. Geojournal.
2: 108-118.
24.Nael, M., Khademi, H., Jalalian, A., Schulin, R., Kalbasi, M., and Sotohian, F. 2009. Effects
of geo-pedological conditions on the distribution and chemical speciation of selected trace
elements in forest soils of western Alborz, Iran. Geoderma. 152: 157-170.
25.Nagajyoti, P.C., Lee, K.D., and Sreekanth, T.V.M. 2010. Heavy metals, occurrence and
toxicity for plants: a review. Environ. Chem. Letter. 8: 199-216.
26.Navas, A., and Machin, J. 2002. Spatial distribution of heavy metals and arsenic in soils of
Aragon (northeast Spain): controlling factors and environmental implications. Applied
Geochem. 17: 961-973.
27.Qingji, G., Jun, D., Yunchuan, X., Qingfei, W., and Liqiang, Y. 2008. Calculating pollution
indices by heavy metals in ecological geochemistry assessment and a case study in parks of
Beijing. J. China Univ. Geosci. 19: 3. 230-241.
28.Rastegari Mehr, M., Keshavarzi, B., Moore, F., Sharifi, R., Lahijanzadeh, A., and Kermani,
M. 2017. Distribution, source identification and health risk assessment of soil heavy metals
in urban areas of Isfahan province, Iran. J. Afric. Earth Sci. 132: 16-26.
29.Rastmanesh, F., Zarrasvandi, A., and Hormozinezhad, F. 2013. Effects of Khuzestan steel
industries on pollution of surrounding soils. 1st International Congress in Geosciences,
Tehran, Iran.
30.Rhoades, J.D. 1996. Electrical conductivity and total dissolved solids. P 417-436,
In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Leoppert, P.N. Soltanpour, M.A. Tabatabai,
C.T. Johnston and M.E. Sumner (Eds.), Methods of Soil Analysis, Part 3: Chemical
Methods. Soil Science Society of America and American Society of Agronomy, Madison,
USA.
31.Safari, T., Karimi, A., Haghnia, G.H., Ayoubi, S., and Fotovat, A. 2014. Variation of Ni, Zn,
and Pb affected by parent material and land use in Mashhad plain. Environ. Sci. 12: 2. 75-86.
32.Shayegan, J., and Afshari, A. 2004. The treatment situation of municipal and industrial
wastewater in Iran. J. Water. Wastewater. 15: 1. 58-69.
33.Smith, K.A. 1991. Soil Analyses. Second edition, Marcel Dekker, New York, 659p.
34.Sparks, D.L. 1996. Methods of Soil Analysis: part 3 Chemical Methods. Soil Science Society
of America and American Society of Agronomy, Madison, Wisconsin, USA, 1390p.
35.Summer, M.E., and Miller, W.P. 1996. Cation exchange capacity and exchange coefficients.
P 1201-1231, In: D.L. Sparks (Ed.), Methods of Soil Analysis Part 3: Chemical Methods.
Soil Science Society of America and America Society of Agronomy, Madison, WI, USA.
36.Taghipour, M., Ayoubi, S., and Khademi, H. 2011. Contribution of lithologic and
anthropogenic factors to surface heavy metals in western Iran using multivariate
geostatistical analyses. Soil. Sediment Contam. 20: 921-937.
37.Thomas, G.W. 1996. Soil pH and soil acidity. P 475-490, In: D.L. Sparks, A.L. Page, P.A.
Helmke, R.H. Leoppert, P.N. Soltanpour, M.A. abatabai, C.T. Johnston and M.E. Sumner
(Eds.), Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of
America and American Society of Agronomy, Madison, USA.
38.Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining
soil organic matter and a proposed modification of the chromic acid titration method.
Soil Sci. 63: 251-263.
39.Zhang, C., Luo, L., Xu, W., and Ledwith, V. 2008. Use of local Moran’s I and GIS
to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci. Total Environ.
398: 212-221.