تأثیر بنزیل‌آدنین و نیتروژن بر برخی ویژگی‌های فیزیولوژیکی دانهال‌های پسته تحت تنش کلرید سدیم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه ولی‌عصر (عج) رفسنجان

2 دانشگاه ولی عصر (عج) رفسنجان

3 دانشگاه ولیعصر (عج) رفسنجان

چکیده

سابقه و هدف: شوری آب و خاک در بسیاری از نقاط جهان، به‌خصوص نواحی خشک و نیمه‌خشک، یک عامل مهم محدودکننده رشد محسوب می‌شود. با توجه به تحمل نسبی گیاه پسته به شوری و وسعت زیاد خاک‌های شور در کشور، به‌نظر می‌رسد پسته گیاه مناسبی برای کشت در این مناطق باشد. از آن‌جا که تولید و فعالیت هورمون‌های گیاهی از جمله سیتوکینین‌ها تحت تأثیر تنش‌های محیطی و عناصر غذایی قرار می‌گیرد و با توجه به شور بودن خاک‌های پسته‌خیز استان کرمان و نقش مهم نیتروژن در تولید و انتقال سیتوکینین از ریشه به اندام هوایی، پژوهش حاضر به بررسی نقش هورمون بنزیل‌آدنین (سیتوکینین) و نیتروژن در شرایط شور بر پارامتر‌های فیزیولوژی و تنظیم‌کننده‏های اسمزی دانهال‎های پسته (رقم بادامی ریز زرند) پرداخت.
مواد و روش‌ها: به‎منظور بررسی تأثیر سطوح مختلف نیتروژن و بنزیل‌آدنین در شرایط شور (کلرید سدیم) بر پارامتر‌های فیزیولوژیکی و تنظیم‌کننده‏های اسمزی دانهال‎های پسته، رقم بادامی ریز زرند یک آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در گلخانه انجام شد. تیمارها شامل شوری (صفر و 2000 میلی‎گرم کلرید سدیم در کیلوگرم خاک)، نیتروژن (صفر و 100 میلی‎گرم در کیلوگرم خاک از منبع نیترات آمونیم) و هورمون بنزیل‌آدنین (صفر، 250 و 500 میلی‌گرم در لیتر) بودند.
یافته‌ها: نتایج نشان داد، در شرایط شور مصرف 500 میلی‌گرم در لیتر بنزیل‌‌آدنین، وزن خشک گیاه را بیش از 2 برابر نسبت به شاهد افزایش داد. هم‌چنین مقدار کلروفیل a، کلروفیل b و کلروفیل کل با شور شدن محیط کشت کاهش یافت، در حالی که مصرف توأمان نیتروژن و بنزیل‌آدنین، به ترتیب افزایش 77، 72 و 52 درصدی این ویژگی‌ها را باعث گردید. کاروتنوئید‌ها نیز تحت تأثیر این تیمارها با افزایش 78 درصدی مواجه گردیدند. هم‏چنین علی‏رغم اینکه شوری شاخص فلورسانس کلروفیل (Fv/Fm) را 31 درصد کاهش داد، ولی مصرف توأمان نیتروژن و 500 میلی‌گرم در لیتر بنزیل‌آدنین توانست تا حدودی اثرات ناشی از تنش شوری را بهبود ببخشد و این پارامتر فتوسنتزی را 43 درصد افزایش دهد. نتایج هم‏چنین نشان داد که مقدار پرولین و قند‌های محلول (تنظیم‌کننده‏های اسمزی) نیز تحت تأثیر نیتروژن و بنزیل‌آدنین (500 میلی‌گرم در لیتر)، با افزایش روبرو گشت، لیکن مصرف هم‌زمان این تیمار‌ها مقدار این تنظیم‌‌کننده‌های اسمزی را به‌ترتیب 78 و 59 درصد نسبت به شاهد افزایش داد. نسبت‏های K/Na و Ca/Na نیز که با شور شدن محیط کاهش معنی داری یافتند، با مصرف500 میلی‌گرم در لیتر بنزیل‌آدنین، افزایش به‏ترتیب 100 و 40 درصدی پیدا نمودند.
نتیجه‌گیری: با توجه به نتایج به‌دست آمده، مشخص گردید که نیتروژن و بنزیل‌آدنین با بهبود ویژگی‌های فیزیولوژی و تنظیم‌کننده‌های اسمزی، توانایی دانهال‏های پسته را در مقاومت به تنش ‌شوری افزایش دادند و در نتیجه پیشنهاد می‏گردد، این آزمایش بر روی درختان مثمره پسته انجام و در صورت افزایش کمی و کیفی محصول به باغداران توصیه گردد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of benzyl adenine and nitrogen on some physiological parameters of pistachio seedlings in saline conditions

چکیده [English]

Background and Objectives: Soil and water salinity is considered an important limiting factor for growth in many parts of the world especially in arid and semi-arid areas. Plant growth is restricted by salt stress like many other abiotic stresses. According to the relative tolerance of pistachio plant to salinity and large areas of saline soils in the country, it seems that pistachio is a suitable plant for cultivation in these areas. Since the production and activity of plant hormones such as cytokinins is influenced by environmental stresses and nutrient elements and considerig the soil salinity of pistachio orchards in kerman province and the important role of nitrogen in the production and exportation of cytokinin from roots to shoots this research for the first time investigates the role of benzyl adenine hormone (cytokinin) and nitrogen under salt stress on physiological parameters and osmotic regulators of pistachio seedlings (Pistachia vera L.).
Materials and Methods: In order to evaluate the effect of different levels of nitrogen and benzyl adenine on some physiological and osmotic regulators parameters of pistachio seedlings, cv. Badami Zarand in saline conditions (sodium chloride), a factorial experiment was carried out in a completely randomized design with three replications in the greenhouse. Treatments were consisted of salinity (0 and 2000 mg NaCl per kg soil), nitrogen (0 and 100 mg N kg-1 soil as NH4No3), and benzyl adenine hormone (0, 250 and 500 mg l-1).
Results: The results showed that application of 500 mg per liter benzyl adenine under salt stress increased dry weight of plant more than 2 folds compared to control. Also, with increasing salinity, the content of chlorophyll a, chlorophyll b and total chlorophyll was decreased. However application of nitrogen and benzyl adenine together, increased these parameters by 77, 72 and 52 percent, respectively. Also, carotenoids are affected by the treatments were increased by 78 percent. Although salinity reduced chlorophyll fluorescence index 31 percent, the application of nitrogen and 500 mg per liter benzyl adenine together could improve somewhat the effects of salinity and increased this photosynthetic parameter by 43 percent. Also, the results showed that proline and soluble sugars contents (osmotic regulators) increased with application of nitrogen and benzyl adenine (500 mg per liter), but combined application of these treatments increased osmotic regulators content by 78 and 59 percent compared to control, respectively.
The ratio of K/Na and Ca/Na were also significantly reduced with increasing salinity, but application of 500 mg per liter benzyl adenine increased these parameters by 100 and 40 percent, respectively.
Conclusion: According to the results, it is concluded that the nitrogen and benzyl adenine with improving of physiological and osmotic regulators parameters, increased the ability of pistachio seedlings to resistance to salinity stress and thus recommended to performe this test on maturity pistachio trees and if increase the quality and quantity of product to be recommended to farmers.

کلیدواژه‌ها [English]

  • Carotenoids
  • chlorophyll
  • Chlorophyll fluorescence
  • Proline
  • Soluble sugars
1.Alison, L.E., and Moodie, C.D. 1965. In: Black, C.A., Ed., Methods of soil analysis. Part 2:
Chemical and microbiological properties, Agronomy, Madison, Wisconsin, USA, 1965,
Pp: 1379-1398.
2.Alizadeh, M., and Rahemi, M. 2003. Influence of foliar application of urea combined with
6-Benzyladenine to decrease flower bud abscission in pistachio nut. Iranian, J. Agric. Sci.
34: 3. 659-665.
3.Ameen, N.M., and Al-Imam, A. 2007. Effect of soaking periods, gibberellic acid and
benzyladenine on pistachio seeds germination and subsequent seedling growth (pistacia vera
L.). Mesopotamia J. Agric. 38: 4. 1-8.
4.Amzallag, G.N., Lerner, K.R., and Poljakoff-Mayber, A. 1992. Interaction between mineral
nutrient, cytokinin and gibberellic acid during growth of sorghum at high NaCl salinity.
J. Exp. Bot. 43: 81-87.
5.Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta
vulgaris. J. Plant Physiol. 24: 1. 1-15.
6.Arshi, A., Abdin, M.Z., and Iqbal, M. 2002. Growth and metabolism of senna as affected by
salt stress. Biol. Plant J. 45: 2. 295-298.
7.Ashraf, M., and McNeilly, T. 1990. Responses of four Brassica species to sodium chloride.
Environ. Exp. Bot. 30: 475-487.
8.Baninasab, B., and Rahemi, M. 2006. Possible role of non-structural carbohydrates in
alternate bearing of pistachio. Eur. J. Hortic. Sci. 71: 277-282.
9.Barciszewski, J., Siboska, G., Rattan, S.I.S., and Clark, B.F.C. 2000. Occurrence, biosynthesis
and properties of kinetin (N6-furfuryladenine). Plant Growth Regul. 32: 257-265.
10.Benhassaini, H., Hocine, A.A.K., and Belkhodja, M. 2012. Effect of salt stress on growth
and accumulation of proline and soluble sugars on plantlets of Pistacia atlantica Desf. subsp.
atlantica used as rootstocks. Biotechnol. Agron. Soc. Environ. J. 16: 2. 159-165.
11.Bongi, G., and Loreto, F. 1989. Gas exchange properties of salt-stressed olive
(Olea europaea L.) leaves. J. Plant Physiol. 90: 533-545.
12.Bouyoucos, G.H. 1951. A recalibration of thehydrometer for making mechanical analysis of
soils. Agron. J. 43: 434-438.
13.Bremner, J.M. 1965. Total Nitrogen. In: C.A. Black (ed.) Methods of soil analysis. Part 2:
Chemical and microbial properties. Number 9 in series Agronomy. American Society of
Agronomy, Inc. Publisher, Madison, USA. Pp: 1049-1178.
14.Costa, M.L., Civello, P.M., Chaves, A.R., and Martinez, G.A. 2005. Effect of ethephon and
6–benzylaminopurine on chlorophyll degrading enzyme and a peroxidase-linked chlorophyll
bleaching during post-harvest senescence of broccoli (Brassica oleraceae L.) at 20 °C.
Postharvest Biol. Technol. J. 35: 191-199.
15.Criado, M.V., Caputo, C., Roberts, I.N., Castro, M.A., and Barneix, A.J. 2009.
Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat
(Triticum aestivum). J. Plant Physiol. 166: 1775-1785.
16.Elfving, D.C. 1984. Factors affecting apple tree response to chemical branch induction
treatments. J. Am. Soc. Hortic. Sci. 109: 476-481.
17.Esmaeilizadeh, M., Pourrajabi Nejad, M.R., Karimi, H.R., and Mohammadi Mirik, A.A. 2013.
Effect of benzyladenine and eliminate of winter irrigation on tree and nut characteristics of
pistachio cv. Kalleh Ghoochi. J. Crops Improve. 15: 3. 171-186. (In Persian)
18.Evelin, H., Kapoor, R., and Giri, B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt
stress: a review. J. Ann. Bot. 104: 1263-1280.
19.Ghorbani Javid, M., Sorooshzadeh, A., Moradi, F., and Modarres Sanavy, S.A.M. 2011.
The role of phytohormones in alleviating salt stress in crop plants. Aust. J. Crop Sci.
5: 6. 726-734.
20.Gulser, F. 2005. Effect of ammonium sulfate and urea on NO3
- and NO2
- accumulation,
nutrient contents and yield criteria in spinach. Sci. Hortic. J. 106: 330-340.
21.Hazrati, S., Tahmasebi Sarvestani, Z., and Babaei, A. 2012. Enhancing yield and aloin
concentration of Aloe vera plants by simultaneous application of N and benzyladenine.
J. Med. Plants Res. 6: 10. 1834-1881.
22.Irigoyen, J.J., Emerich, D.W., and Sanchez-Diaz, M.D. 1992. Water stress induced changes
concentrations of prolin and total soluble sugars in nodulated alfalfa (medicago sativa)
plants. Physiol. Plant J. 84: 55-60.
23.Jackson, M.L. 1975. Soil chemical analysis, Advance course. Univ. Wis., College Agric.,
Dept. Soils, Madison, WI, U.S.A.
24.Kamiab, F., Talaie, A., Javanshah, A., Khezri, M., and Khalighi, A. 2012. Effect of
long-term salinity on growth, chemical composition and mineral elements of pistachio
(Pistacia vera cv. Badami-Zarand) rootstock seedlings. Ann. Biol. Res. J. 3: 12. 5545-5551.
25.Karimi, S., Rahemi, M., Maftoun, M., Eshghi, S., and Tavallali, V. 2009. Effects of longterm
salinity on growth and performance of two pistachio (Pistacia vera L.) rootstocks.
Aust. J. Basic Appl. Sci. 3: 3. 1630-1639.
26.Knudsen, D., Peterson, G.A., and Pratt, P.F. 1982. Lithium, sodium and potassium.
P 225-246, In: A.J. Page (Ed.), Methods of soil analysis. Part 2. Chemical imd
Microbiological. Propenies.Agronomy Series Number 9 (Part 2). American Society of
Agronomy. Inc. Soil Science Society of America. Inc. Madison.Wisconsin. USA.
27.Lacan, D., and Baccou, J.C. 1998. High levels of antioxidant enzymes correlate with delayed
senescence in nonnetted muskmelon fruits. Planta. 204: 3. 377-382.
28.Lindasy, W.L., and Norwell, W.A. 1978. Departmentof a DTPA soil test for zinc, iron and
manganese and copper. Soil Sci. Am. J. 42: 421-428.
29.Lovatt, C.J., and Ferguson, L. 1994. Using foliar application of urea combined with
6-benzyladenine to decrease Pistachio floral bud abscission in an on-year to increase yield
the next year California Pistachio Production Industry. Annual Reports, 12: 155-158.
30.Mane, A.V., Deshpande, T.V., Wagh, V.B., Karadge, B.A., and Samant, J.S. 2011. A critical
review on physiological changes associated with reference to salinity. J. Environ. Sci.
Technol. 1: 6. 1192-1216.
31.Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2nd Edn. Academic Press, London.
32.Mohammed, A.H.M.A. 2007. Physiological aspects of mungbean plant (Vigna radiata L.
Wilczek) in response to salt stress and gibberellic acid treatment. Res. J. Agric. Biol. Sci.
3: 4. 200-213.
33.Mozafari, V., and Khaleghi, F. 2016. Effects of gibberellic acid and nitrogen on some
physiology parameters and micronutrients concentration in pistachio under salt stress.
J. Water Soil. 30: 3. 955-967. (In Persian)
34.Mozafari, V., Asadollahi, Z., Tajabadi Pour, A., and Akhgar, A. 2013. Effects of Salinity and
Manganese on Physiological and Echophysiological Characteristics of Pistachio (Pistacia
vera L.). J. Soil Water Res. 44: 1. 81-94. (In Persian)
35.Mozaffari, V., and Tajabadipour, A. 2004. Final report the study of pistachio orchard
questions and problems project. Vali-E-Asr University, Rafsanjan, Iran. (In Persian)
36.Olsen, S.R., Cole, C.V., Watnab, F.S., and Decan, L.A. 1954. Estimation of available
phosphorous in soil byextra action with sodium bicarbonate U.S. Department of Agric. 939p.
37.Paquin, R., and Lechasseur, P. 1979. Observations sure une methode de dosage de la proline
libre dans les extraits de plantes. Can. J. Bot. 57: 1851-1854.
38.Pourrajabi Nejad, M.R. 2013. Effects of BA and water stress in winter on nut qualitative and
quantitative traits and spring forst hardening of pistachio cv. Kaleh-Ghoochi. Horticultural
Department, Agricultural College, Vali-E-Asr University, Rafsanjan, Iran. (In Persian)
39.Razavi Nasab, A., Tajabadi Pour, A., and Shiranim, H. 2014. Effect of salinity and nitrogen
application on growth, chemical composition and some biochemical indices of pistachio
seedlings (Pistacia vera L.). J. Plant Nutr. 37: 10. 1612-1626.
40.Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. U.S.D.A. Hand
book, No. 60. Washington, D.C., U.S.A.
41.Roitsch, T., and Ehness, R. 2000. Regulation of source/sink relations by cytokinins. J. Plant
Growth Regul. 32: 359-67.
42.Samuelson, M.E., and Larsson, C.M. 1993. Nitrate regulation of zeatin riboside levels in
barley roots: effects of inhibitors of N assimilation and comparison with ammonium. J. Plant
Sci. 93: 77-84.
43.Serio, F., Gara, L.D., Caretto, S., Leo, L., and Santamaria, P. 2004. Influence of an increased
NaCl concentration on yield and quality of cherry tomato grown in posidonia (Posidonia
oceanica (L) Delile). J. Sci. Food Agr. 84: 1885-1890.
44.Seyedi, M. 2003. Study the effectiveness of some factors on controlling of alternate bearing
and comparison of some quantitative and qualitative characters of alternate bearing
pistachio. Ph.D. Thesis, College of science and agricultural engineering. Tehran university.
45.Sharifi, Z. 2001. Effect of nitrogen application on relative tolerance of pistachio seedlings to
salinity stress. M.Sc. Thesis, Soil Science Department, Agricultural College, Vali-E-Asr
University, Rafsanjan, Iran. (In Persian)
46.Siddiqui, M.H., Khan, M.N., Mohammad, F., and Khan, M.M.A. 2008. Role of nitrogen and
gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation
in Brassica juncea L. under salt stress. J. Agron. Crop Sci. 194: 3. 214-224.
47.Soad, M.M.I., Lobna, S.T., and Farahat, M.M. 2010. Vegetative growth and chemical
constituents of Croton plants as affected by foliar application of benzyl adenine and
gibberellic acid. J. Am. Sci. 6: 7. 126-130.
48.Talebi, M., Mozaffari, V., and Tajabadipour, A. 2010. Response of pistachio rootstocks
(Pistacia Vera cv. Ghazvini) to different levels of zinc and sodium chlorid. Iran. J. Soil Res.
(Soil and Water Sci.). 23: 2. 149-161.
49.Zad-Salehi, F., Mozafari, V., Tajabadi Pour, A., and Hokmabadi, H. 2011. Interaction of
sodium and magnesium on some growth characteristics and chlorophyll content of pistachio
in perlite substrate. J. Sci. Technol. Greenhouse Culture. 2: 6. 23-34. (In Persian)