مقایسه اثر مواد اصلاح‌کننده مختلف بر آبشویی املاح از یک خاک شور و قلیا در کرمان به روش آزمایشگاهی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه آبیاری، دانشکده آب و خاک، دانشگاه زابل. زابل. ایران.

2 عضو هیئت علمی گروه آبیاری، دانشکده آب و خاک، دانشگاه زابل. زابل. ایران.

3 محقق مرکز تحقیقات کشاورزی و منابع طبیعی استان کرمان

4 عضو هیئت علمی موسسه تحقیقات فنی و مهندسی کشور

چکیده

وجود مقادیر زیاد املاح در بسیاری از منابع آب کشاورزی منجر به شور و سدیمی شدن بیشتر اراضی در استان کرمان شده است. این مسئله ازجمله محدودیت‌های عمده سال‌های اخیر در تولید محصولات باغی خصوصا پسته به‌حساب می‌آید. تحقیق حاضر به بررسی نقش مواد اصلاح‌کننده مختلف، بر روند اصلاح یک خاک شور و سدیمی در باغ پسته در کرمان می‌پردازد. در این پژوهش، تأثیر چهار تیمار آب آبیاری (شاهد)، گچ پودری، گچ محلول در آب و اسیدسولفوریک در چهار تکرار در قالب طرح کاملاً تصادفی در شرایط آزمایشگاهی و با استفاده از ستون خاک مورد بررسی قرار گرفت. آبشویی ستون‌ها به‌صورت متناوب و تا دو برابر عمق خاک انجام شد. برای تیمار گچ پودری، قبل از آبشویی گچ با چند سانتی‌متر سطحی خاک سیلندرها مخلوط ‌شد. در تیمار‌های اسیدسولفوریک و گچ محلول، اسید و گچ در مخزن‌های جداگانه با آب آبیاری مخلوط ‌شدند. بررسی تغییرات غلظت املاح در زهاب خروجی از ستون‌های خاک نشان داد که بیشترین میزان املاح در اولین مرحله آبشویی از ستون‌های خاک خارج شد و با تکرار عملیات آبشویی در مراحل بعد، غلظت آن به‌صورت غیرخطی کاهش یافت و به مقدار تقریباً ثابتی ‌رسید. گچ پودری و محلول در آب نه‌تنها تفاوت معنی‌داری در آبشویی سدیم از خاک نداشتند، بلکه نسبت به تیمار شاهد باعث کاهش کارایی آبشویی سدیم به میزان30 تا 40 درصد گردیدند. در مقابل، میزان سدیم تخلیه شده از خاک با مصرف اسیدسولفوریک تقریباً معادل با تیمار شاهد بود.در مقایسه بین تیمارها کمترین میزان کلسیم به ازای تیمار شاهد از خاک آبشویی شد و لذا مقدار کلسیم باقی مانده در خاک به ازای تیمار شاهد بیشتر از سایر تیمارها بود. این در حالی است که میزان کل املاح خروجی از تیمار شاهد نیز بیشتر از سایر تیمارها بود. تغییرات SAR زهاب برای تیمارهای مورد مطالعه تا حد زیادی مبین درصد تغییر سدیم در طی مراحل آبشویی بوده و لذا تیمار آب آبیاری به عنوان شاهد با بیشترین میزان خروج سدیم، بیشترین میزان SAR را نسبت به سایر تیمارها داشت. لذا با توجه به کاهش بیشتر املاح، تخلیه سدیم و عدم وجود اختلاف معنی‌دار بین pH تیمار شاهد با سایر تیمارها می‌توان ادعا داشت که بدون استفاده از هر ماده اصلاح‌کننده‌ای و تنها از طریق آبشویی می‌توان به هر دو هدف کاهش شوری و تخلیه سدیم دست یافت. از سوی دیگر با توجه به مسئله بحران آب در منطقه و خروج حدود 75 و 50 درصد املاح و سدیم در ابتدای آبشویی، می‌توان کاربرد عمق آب معادل با 1.1 برابر عمق خاک را برای آبشویی خاک مورد مطالعه توصیه نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Comparative effects of chemical amendments on salt leaching from a saline-sodic soil in Kerman under laboratory condition

نویسنده [English]

  • Hormazd Naghavi 3
چکیده [English]

Most of lands in Kerman province are become saline and sodic, due to large amounts of salts in irrigation water sources. This is considered as one of the major limitations in the production of horticultural crops especially pistachio in recent years. The target of this study was investigation of the effect of different amendments of saline-sodic soil amelioration. Here, the effect of four treatments consist of irrigation water (control), gypsum, saturated gypsum and sulfuric acid was conducted four times in the laboratory condition based on CRD, using the soil column. Columns leaching was carried out intermittently and twice as much as the depth of the soil. Gypsum powder was completely mixed with the surface soil before starting leaching. Sulfuric acid and saturated gypsum were solved in irrigation water in separate containers. Changes in solute salt in drainage water from soil columns showed that the maximum amount of salts were removed from soil columns in the beginning of leaching and by continuing leaching process, reduced nonlinear to the constant concentration. There was no significant difference between gypsum and saturated gypsum treatments in sodium leaching, and these methods reduced the efficiency of leaching up to 30–40 percent. In the contrary, in presence of sulfuric acid the amount of sodium leached out of soil profile almost equaled that of the control treatment. Among all treatments, control treatment removed less amount of calcium and there for its remaining amount of calcium in the soil was more than other treatments. While in control treatment the amount of total removed salt was the highest. During leaching process, SAR changes in drainage water largely reflected the sodium changes and irrigation water compared to other treatments, as a control treatment with the highest amount of sodium removal, had the highest drainage water of SAR. Therefore, due to the great reduction in total salt, sodium leaching and no significant difference between control treatment’s pH and others treatment’s pH, it could be concluded that using irrigation water without application of amendments, plus considering economic issues, was a suitable strategy in successfully reducing both salinity and sodicity of the soil profile. On the other hand, due to the problem of water crisis in this region and removal of about 75% and 50% salts and sodium respectively at the beginning of leaching, irrigation water up to 1.1 times of soil depth can be recommended for the leaching of soluble salt from soil profile in this study area.

کلیدواژه‌ها [English]

  • Saline-sodic soil
  • Leachate
  • sulfuric acid
  • Gypsum
1.Abdelhamid, M., Eldardiry, E., and Abd El-Hady, M. 2013. Ameliorate salinity effect through
sulphur application and its effect on some soil and plant characters under different water
quantities. J. Agric. Sci. 4: 39-47.
2.Amezketa, E., Aragues, R., and Gazol, R. 2005. Efficiency of sulfuric acid, mined gypsum
and two gypsum by-products in soil crusting prevention and sodic soil reclamation. Agron. J.
97: 983-989.
3.AsadiKapourchal, S., Homaee, M., and Pazira, E. 2013. A parametric desalinization model for
large scale saline soil reclamation. J. Basic. Appl. Sci. Res. 3: 774-783.
4.Bahceci, I. 2009. Determination of salt leaching and gypsum requirements with field tests of
saline–sodic soils in central turkey. J. Irrig. Drain. 58: 332-345.
5.Barzegar, A.R. 2012. Salt-affected soils: Diagnosis and productivity. Shahid Chamran
Uni. Press, 186p.
6.Cheraghi, S.A.M. 2004. Institutional and scientific profiles of organizations working on saline
agriculture in Iran. In Prospects of Saline Agriculture in the Arabian Peninsula: Proceedings
of the International Seminar on Prospects of Saline Agriculture in the GCC Countries,
Dubai, United Arab Emirates, Pp: 399-412.
7.Dahiya, I.S., Malik, R.S., and Singh, M. 1981. Field studies on leaching behavior of a highly
saline-sodic soil under two modes of water application in the presence of crops. J. Agric. Sci.
Camb. 97: 383-389.
8.Diamantis, V.I., and Voudrias, E.A. 2008. Laboratory and pilot studies on reclamation of a
salt-affectedalluvial soil. J. Environ. Geol. 54: 643-651.
9.Dieleman, P.J. 1963. Reclamation of Salt Affected Soils in Iraq. Veenman, Wageningen,
175p.
10.Friedrich, J. 1981. Basics of nutrient tropical soil. GDR Press, 50p.
11.Gharaibeh, M.A., Eltaif, N.I., and Shunnar, O.F. 2011. Leaching and reclamation of
calcareous saline-sodic soil by moderately saline and moderate-SAR water using gypsum
and calcium chloride. J. Plant Nutr. J. Soil Sci. 172: 713-719.
12.Heald, W.R. 1965. Calcium and Magnesium. P 999-1010, In: Methods of Soil Analysis,
Part II. Am. Soc. Agron. Inc. Madison, Wis. USA.
13.Hendrikus Barnard, J., Van Rensburg, L.D., and Peter Bennie, A.L. 2010. Leaching irrigated
saline sandy to sandy loam apedal soils with water of a constant salinity. J. Irrig. Sci.
28: 191-201.
14.Hoffman, G.J. 1980. Guidelines for reclamation of salt-affected soils. Proceedings of
International American Salinity and Water Management, Technical Conference. Mecxico,
Pp: 49-64.
15.Horneck, D.A., Ellsworth, J.W., Hopkins, B.G., Sullivan, D.M., and Stevens, R.G. 2007.
Managing salt-affected soils for crop production. Northwest Extension publication Oregon
State University, University of Idaho, Washington State University, 13p.
16.Jafari, M. 1994. Salt features. Research Institute of Forests and Rangelands Press, 55p.
17.Jalali, A.A., and Sakhairad, H. 2011. Comparing continuous and intermittent leaching
methods in saline-sodic soil in south of Khuzestan. J. Water Sci. Engin. 1: 3. 17-30.
18.Jury, W.A., Jarrell, W.M., and Devitt, D. 1979. Reclamation of saline-sodic soil by leaching.
Soil Sci. Soc. Am. J. 43: 1100-1106.
19.Kelley, W.P. 1951. Alkaline Soils, their Formation, Properties and Reclamation. Reinhold
Publishing: New York, 176p.
20.Khosla, B.K., Gupta, R.K., and Abrol, I.P. 1979. Salt leaching and the effect of gypsum
application in a saline-sodic soil. Agricultural water management. 2: 193-202.
21.Leffelaar, P.A., and Sharma, R.P. 1977. Leaching of a highly saline-sodic soil. J. Hydrol.
32: 203-218.
22.Miller, R.J., Nielsen, D.R., and Biggar, J.W. 1965. Chloride displacement in Panoche clay
loam in relation to water movement and distribution. J. Water Resour. Res. 1: 63-73.
23.Miyamoto, S., and Enriquez, C. 1990. Comparative effects of chemical amendments on salt
and NA leaching. J. Irrig. Sci. 11: 83-92.
24.Nielsen, D.R., and Biggar, J.W. 1961. Miscible displacement in soils. Soil Sci. Soc. Am. J.
25: 1-5.
25.Oster, J.D., and Frenkel, H. 1980. The chemistry of the reclamation of sodic soil with
gypsum and lime. Soil Sci. Soc. Am. J. 44: 41-45.
26.Öztürk, H.Z., and Özkan, I. 2002. Solute movement in large soil columns under different
water flow velocities. J. Die Bodenkultur. 53: 183-189.
27.Prather, R.J., Goertzen, J.O., Rhoades, D., and Frenkel, H. 1978. Efficient amendment use
insodic soil reclamation. Soil Sci. Soc. Am. J. 42: 782-786.
28.Qadir, M., Qureshi, A.S., and Cheraghi, S.A.M. 2008. Extent and characterization of
salt-affected soils in Iran and strategies for their amelioration and management. J. Land
Degrad. Dev. 19: 214–227.
29.Reeve, R.C. 1957. The relation of salinity to irrigation and drainage requirements. Third
Congress of International Commission on Irrigation and Drainage, Transactions. 5: 175-187.
30.Sadiq, M., Hassan, G., Mehdi, S. M., Hussain, N., and Jamil, M. 2007. Amelioration of
saline-sodic soils with tillage implements and sulfuric acidapplication. J. Pedosphere.
17: 182-190.
31.Sahin, U., and Anapali, O. 2005. A laboratory study of the effects of water dissolved gypsum
application on hydraulic conductivity of saline-sodic soil under intermittent ponding
conditions. Irish J. Agric. Food Res. 44: 297-303.
32.Singh, H., and Bajwa, M.S. 1991. Effect of sodic irrigation and gypsum on thereclamation of
sodic soil and growth of rice and wheat plants. J. Agric. Water Manage. 20: 163-171.
33.Smart, M.K. 2003. Effect of long term irrigation with reclaimed water on soils of the
northern Adelaide plains. Aust. J. Soil Res. Pp: 1-16.
34.Sposito, G., and Mattigod, S.V. 1977. On the chemical foundation of the sodium adsorption
ratio. Soil Sci. Soc. Am. J. 41: 2. 323-329.
35.Vadyaniana, A.F., and Rio, P.K. 1974. Changes in aggregates status of saline sodic soil after
their reclamation by different methods. Vest Mask. Univ. Ser. 6 Boil. Pochroned. 29: 111-117.
36.Valzano, F.P., Greene, R.S.B., Murphy, B.W., Rengasamy, P., and Jarwal, S.D. 2001.
Effects of gypsum and stubble retention on the chemical and physical properties of asodic
grey Vertosol in western Victoria. Aust. J. Soil Res. 39: 1333-134.
37.Yazdanpanah, N., and Mahmoodabadi, M. 2011. Time monitoring of leachate quality
during reclamation process of saline-sodic soil using soil column. J. Soil Manage. Sust. Prod.
1: 1-22.