ارزیابی تناسب اراضی منطقه هشترود با فرآیند تحلیل سلسله مراتبی فازی برای تیپ بهره وری نخود آبی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 عضو هیئت علمی دانشگاه ارومیه

2 استادیار گروه علوم و مهندسی خاک، دانشگاه تبریز،

3 دانش آموخته کارشناسی ارشد گروه جغرافیا و برنامه ریزی، دانشگاه تبریز

چکیده

سابقه و هدف: ارزیابی تناسب اراضی با دستورالعمل فائو معمول‌ترین رویکرد برای ارزیابی اراضی بوده که مبتنی بر پارامترهای بیوفیزیکی و پارامترهای اقتصادی-‌اجتماعی اراضی است. فائو برای ارزیابی و تهیه نقشه‌های تناسب از شیوه بولین استفاده می‌کند که توسط عده‌ای از محققین ارزیابی مورد نقد و انتقاد قرار گرفته است چرا که طبیعت پیوسته خاک و عدم قطعیت در اندازه‌گیری‌ها را در نظر نمی‌گیرد، بنابراین برای چیره شدن بر مشکلات ابهام در تعریف و سایر عدم قطعیت‌ها روش فازی پیشنهاد شده‌است. فرآیند تحلیل سلسله مراتبی نیز ضرایب وزنی مورد نیاز برای ارزیابی تناسب اراضی را با کمک ماتریس ارجحیت برای همه معیارهای موثر با استفاده از مقایسات جفتی با ضرایب الویت قابل تغییر محاسبه و نظرات کارشناسی را وارد مدل می‌کند. نهایتا تناسب اراضی استنتاج شده با روش تلفیقی فازی و فرآیند تحلیل سلسله مراتبی نه‌تنها وابسته به توابع عضویت فازی بوده بلکه وابسته به وزن اختصاص یافته به همه ویژگی‌ها است. این مقاله از روش فرآیند سلسله مراتبی فازی برای ارزیابی تناسب اراضی استفاده می‌کند و فرصتی برای مدل‌سازی تولید نخود آبی در یک مطالعه موردی شهرستان هشترود (جنوب استان آذربایجان شرقی) می‌باشد.
مواد و روش‌ها: داده‌های مورفولوژیکی و آزمایشگاهی از 29 خاکرخ در مزارع نخود شهرستان هشترود جمع‌آوری شد. ویژگی‌های خاک و زمین‌نما بر اساس بررسی منابع و میزان وزن‌های ارایه شده بر اساس نظرات کارشناسی انتخاب گردید. برای ارزیابی تناسب اراضی در مرحله اول ساختار سلسله مراتبی تشکیل گردید. در مرحله دوم مقادیر ویژگی‌های اراضی انتخاب شده به‌وسیله توابع عضویت متقارن و نامتقارن فازی‌سازی شدند. در مرحله سوم اثرات متقابل و ارزش مربوط به هر ویژگی برآورد شد. وزن‌ها از مقایسه‌های جفتی روش فرآیند تحلیل سلسله مراتبی بر اساس نظرات کارشناسی به‌دست آمد. در مرحله چهارم لایه‌های وزن‌دار با تابع مربوطه تشکیل گردید. نهایتا تناسب اراضی با ترکیب لایه‌های وزن‌دار اراضی تعیین گردید. برای سنجش صحت مدل ارزیابی نیز از تطابق و عدم تطابق بین نقشه تناسب اراضی و تولید واقعی استفاده شد.
یافته‌ها: نتایج نشان داد که هیچ نقطه‌ای در منطقه مورد مطالعه با توابع عضویت پیوسته برابر یک (کاملا متناسب) ارزیابی نشد. در این روش توابع عضویت برای برخی از ویژگی‌های موثر در تولید نخود آبی برابر یک است، با این حال تناسب نهایی علاوه بر اینکه به مقادیر توابع عضویت وابسته است به وزن‌های اختصاص داده شده به هر ویژگی با روش فرآیند سلسله مراتبی نیز بستگی دارد. همچنین نتایج موید این مطلب است که اغلب منطقه مطالعاتی (2/62 درصد) با توابع عضویت مربوطه در کلاس‌های تناسب 6/0 تا 7/0 طبقه‌بندی شدند. ظرفیت تبادل کاتیونی (179/0)، ظرفیت نگهداری آب در دسترس (161/0) و کربنات کلسیم (143/0) وزن بیشتری نسبت به سایر معیارها اخذ نمودند، بنابراین به‌عنوان مهم‌ترین معیارها در تناسب اراضی منطقه محسوب می‌شوند. تطابق بین نقشه تناسب اراضی و تولید واقعی نیز 7/76 درصد است که نشان‌دهنده کارایی بالای مدل بوده و روش مورد استفاده نتایج دقیقی را به دلیل اینکه موارد نامشخص را در ارتباط با شرایط مرزی معیارها مورد خطاب قرار می‌دهد، ارایه می‌کند و اثرات ویژگی‌هایی را که ارزش نزدیک به مرزهای کلاس تناسب مورد نظر دارند را محاسبه می‌نماید.
نتیجه‌گیری: روش فرآیند تحلیل سلسله مراتبی فازی به دلیل تطابق با بسیاری از ویژگی‌های خاکی اراضی می‌تواند یک توزیع قابل درک از مقادیر تناسب اراضی ارائه نماید.

کلیدواژه‌ها


عنوان مقاله [English]

ارزیابی تناسب اراضی منطقه هشترود با فرآیند تحلیل سلسله مراتبی فازی برای تیپ بهره وری نخود آبی

نویسندگان [English]

  • Moslem Servati 1
  • Hossein Rezaei 2
  • majid pishnamaz ahmadi 3
1 assistant prof. of university of urmia
3 -
چکیده [English]

Background and Objectives: The FAO framework for land suitability evaluation is the most commonly used and is based on the biophysical properties and socioeconomic parameters of lands. The FAO framework for land suitability and soil mapping application a Boolean approach that has been criticized by some of authors. Because the Boolean representations ignore the continuous nature of soil and uncertainties in measurement .Also for overcoming problems related to vagueness in definition and other uncertainties, Fuzzy set methodologies have been proposed. Analytical Hierarchy Process (AHP) calculates the needed weighting factors with the help of a preference matrix where all identified relevant criteria are compared against each other with reproducible preference factors. Finally the derivation of suitability using Fuzzy AHP method was not just based on the fuzzy membership function values, but also the weighting values allocated to any criterion. This article uses of Fuzzy–AHP methods to land suitability evaluation. The method were evaluated application a case study which model the opportunities for chickpea production under irrigation conditions in the Hashtrood region in East Azarbaijan province, IRAN.
Materials and Methods: Soil morphological and analytical data were obtained from 29 sampling profile on Chickpea farms. Then a number of relevant soil and landscape criteria were identified through the literature and their weights specified as a result of discussions with local experts. For land suitability evaluation by FAHP approach, First hierarchical structure employed, Second asymmetric and symmetric models were used for land characteristics, Third Weighting the model criteria provides relative measures of the interaction and importance of the criteria. The weights were obtained through a pairwise comparison analysis in an AHP approach in discussion with local experts, Fifth the weighted criterion layers are generated using the relative function, Finally The suitability is calculated by combining the weighted criterion layers. For assessing of accuracy of modeling, has been used matching of between suitability and actual production maps.
Results: The results indicated that cation exchange capacity (0.179), available-water-holding capacity (0.161) and soil calcium carbonate (0.143) have higher weights than other criteria and therefore they are considered as the most significant criteria in the study area. The results of the Fuzzy AHP approaches showed that no locations in the study area were mapped with a degree of suitability equal to 1. In this model, a number of locations in specific criteria were given MFs of 1 due to the strength of support they offered in the overall assessment of chickpea suitability. However, the derivation of the overall suitability using the Fuzzy AHP approach was not only based on the fuzzy membership function values but also the weighting values allocated to each criterion. The results of the Fuzzy AHP showed that the majority of the study area has membership values to the set of suitability between 0.6 and 0.7. Agreement between land suitability and actual map is 76.7; also this model has been presented good result for land suitability of chickpea in study region. The results of this work provide information to decision-makers in their land planning decisions and further work should develop trial plots to ground truth the suitability measures.
Conclusion: Fuzzy AHP approaches accommodate the continuous nature of some soil properties and produce more intuitive distributions of land Suitability Indexes.

کلیدواژه‌ها [English]

  • Experts opinions
  • Map accommodation
  • Membership function
1.Ananda, J., and Herath, G. 2007. Multi-attribute preference modeling and regional land-use
planning. Ecological Economics. 65: 325-335.
2.Ayalew, L.G., and Selassie, Y.G. 2015. Evaluation of land suitability for cash and perennial
cops using geographical information system in east Amhara region. Ethiopia. Inter. J. Rem.
Sens. GIS. 4: 1-7.
3.Baja, S., Chapman, D.M., and Dragovich, D. 2001. A conceptual model for defining and
assessing land management units using a fuzzy modeling approach in a GIS environment.
Environmental Management. 29: 647-61.
4.Burrough, P.A. 1989 Fuzzy mathematical methods for soil survey and land evaluation. J. Soil
Sci. 40: 447–92.
5.Chaveza, M.D., Berentsen, P.B.M., and Oude Lansink, A.G.J.M. 2012. Assessment of criteria
and farming activities for tobacco diversification using the Analytical Hierarchical Process
technique. Agricultural Systems. 111: 53-62.
6.Eaalem, M., Camber, A., and Fisher, P. 2011. A comparison of Fuzzy AHP and ideal point
methods for evaluation land suitability. Trans. GIS J. 15: 3. 329-346.
7.FAO. 1976. A Framework for Land Evaluation. Food and Agricultural Organization. Rome,
76p.
8.FAO. 1993. Guidelines for land use planning. FAO Development Series Rome, 135p.
9.Hamzeh, S.M., Mokarram, M., and Alavipanah, S.K. 2014. Combination of Fuzzy and AHP
methods to assess land suitability for barley: Case Study of semi-arid lands in the southwest
of Iran. Desert. 19: 2. 173-181.
10.Jafari, S., and zaredar, N. 2010. Land Suitability analysis using multi attribute decision
making approach. Inter. J. Environ. Sci. Dev. 1: 5. 441-445.
11.Joss, B.N., Hall, R.J., Sidders, D.M., and Keddy, T.J. 2007. Fuzzy-logic modeling of land
suitability for hybrid poplar across the Prairie Provinces of Canada. Environmental
Monitoring and Assessment. 21: 231-249.
12.Keshavarzi, A., Sarmadian, F., Heidari, A., and Omid, M. 2010. Land suitability evaluation
using fuzzy continuous classification (A case study: Ziaran region). Modern Applied
Science. 4: 7. 72-81.
13.Malczewski, J. 1999. GIS and Multicriteria Decision Analysis. New York, John Wiley and
Sons, 408p.
14.McBratney, A.B., and Odeh, I.O.A. 1997. Application of Fuzzy sets in soil science: Fuzzy
logic, fuzzy measurements and fuzzy decisions. Geoderma. 77: 85-113.
15.Newhall, F., and Berdanier, C.R. 1996. Calculation of soil moisture regimes from the
climatic record. Natural Resources Conversations Service, Soil Survey Investigation Report,
13p.
16.Pontius, R.G.J., and Cheuk, M.L. 2006. A generalized cross-tabulation matrix to compare
soft classified maps at multiple resolutions. Inter. J. Geograph. Inf. Sci. 20: 1-30.
17.Saaty, T.L. 1977 A scaling method for priorities in hierarchical structures. J. Math. Psychol.
15: 234-81.
18.Saaty, T.L. 1980. The Analytic Hierarchy Process. New York, McGraw–Hill, 267p.
19.Saaty, T.L. 2008. Decision making with the analytic hierarchy process. International Journal
of Services Sciences. 1: 83-97.
20.Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., and Broderson, W.D. 2012. Field Book
for Describing and Sampling Soils. Natural Resources Conservation Service, USDA,
National Soil Survey Center, Lincoln, NE, 295p.
21.Siddique, M. 1996. Landfill siting using geographic information systems: A demonstration.
J. Environ. Engin. 122: 15-523.
22.Tang, H., Debaveye, J., Ruan, D., and Van Ranst, E. 1991. Land suitability classification
based on fuzzy set theory. Pedologie. 3: 277-290.
23.USDA. 2014. Keys to Soil Taxonomy. 12th edition. Soil Survey Staff, Natural Resource
Conservation Service, 359p.
24.Van Ranst, E., Tang, H., Groenemans, R., and sinthurahat, S. 1996. Application of fuzzy
logic to land suitability for rubber production in peninsular Thailand. Geoderma. 70: 1. 1-19.
25.Van Ranst, E., and Tang, H. 1999. Fuzzy reasoning versus Boolean logic in land suitability
assessment. Malaysi. J. Soil Sci. 3: 39-58.
26.Voogd, H. 1983 Multicriteria Evaluation for Urban and Regional Planning. London, Pion,
380p.
27.Young, A., and Goldsmith, P.F. 1977. Soil survey and land evaluation in developing
countries: A case study in Malawi. Geograph. J. 143: 407-431.
28.Zhang, J., Su, Y., Wu, Y., and Liang, H. 2015. GIS based land suitability assessment for
tobacco production using AHP and fuzzy set in Shandong province of China. Computers and
Electronics in Agriculture. 114: 202-211.