اثرتنش کم آبی و قارچ های میکوریزی Rhizophagus intraradices و Funneliformis mosseae برخصوصیات رشدی و جذب برخی عناصر در عدس

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استاد گروه مهندسی علوم خاک دانشگاه تهران

2 دانشجوی کارشناسی ارشد دانشگاه تهران

3 هیئت علمی موسسه تحقیقات آب و خاک کشور

چکیده

سابقه و هدف: کمبود آب یکی از عوامل محدودکننده‌ی تولید محصولات کشاورزی در مناطق خشک و نیمه خشک است. در سال‌های اخیر ریزسازواره‌های مفید به‌عنوان یکی از راه‌کارهای کاهش اثرات تنش خشکی و افزایش تولید محصول در کشاورزی پایدار ارزیابی‌شده‌اند. بنابراین این پژوهش با هدف ارزیابی تأثیر قارچ‌های میکوریزی بر رشد و جذب برخی عناصر گیاه عدس (رقم بیله سوار) تحت تنش شرایط کم‌آبی انجام گرفت.
مواد و روش‌ها: آزمایشی در آرایش فاکتوریل به‌صورت طرح کامل تصادفی شامل دو فاکتور، تنش رطوبتی در چهار سطح (20%، 40%، 60% و 80% رطوبت قابل دسترس) و فاکتور دوم نوع قارچ میکوریزی در چهار سطح Rhizophagus intraradices و Funneliformis mosseae، مخلوط دو گونه و شاهد در اتاقک‌های رشد در گروه علوم و مهندسی خاک دانشگاه تهران طراحی و در سال 1393 انجام گرفت. پس از طی دوره‌ی رشد، صفات رشدی شامل ماده‌ی خشک شاخساره، وزن خشک ‌ریشه، تعداد غلاف، کلروفیل برگ، کلنیزاسیون ریشه، ارتفاع گیاه و عناصر N, P, K, Fe, Zn در شاخساره اندازه‌گیری شد. و تجزیه تحلیل آماری داده‌ها با نرم‌افزارSAS و مقایسه‌ی میانگین داده‌ها با آزمون چند دامنه‌ای دانکن در سطح پنج درصد انجام گرفت.
یافته‌ها : نتایج نشان داد در اثر تنش کم آبی تمام صفات گیاهی اندازه‌گیری شده کاهش یافت به طوری که ماده‌ی خشک شاخساره، وزن خشک ‌ریشه، تعداد غلاف، شاخص کلروفیل برگ، کلنیزاسیون ریشه و ارتفاع گیاه در بالاترین سطح تنشS1 نسبت به شاهد NS به ترتیب 99/49، 12/41، 2/11، 4/24، 06/26، 09/28 و 15/22 درصد کاهش یافتند. همچنین اثر متقابل تنش کم آبی و گونه‌ی قارچ میکوریز بر تمام صفات اندازه گیری شده بجز ارتفاع بوته، وزن خشک ریشه، عدد کلروفیل، روی، فسفر و پتاسیم در سطح پنج‌درصد معنی دار بود. تمام صفات اندازه‌گیری شده در گیاهان تلقیح شده با قارچ میکوریزی با گیاهان غیر میکوریزی بالاتربود. بیشترین تعداد غلاف، وزن خشک شاخساره و آهن در تیمار M1NS بدست آمد که به ترتیب نسبت به شاهد 51، 07/36، 48/79 درصد بیشتر بود. بیشترین میزان کلنیزاسیون ریشه در تیمار S3M2 به میزان 3/87 درصد و کمترین مقدار در تیمار S1NM به میزان 25/8 درصد به دست آمد. همچنین قارچ‌های میکوریزی R. intraradices، F. mosseae و مخلوط دو گونه محتوای آهن در شاخساره رابه ترتیب 2/89 ،0/45، 7/33 درصد نسبت به شاهد افزایش دادند.
نتیجه‌گیری:تنش کم آبی تاثیر منفی برتمام شاخص های رشد داشت اما بیشترین کاهش در وزن خشک ریشه و شاخساره دید شد. کاربرد قارچ های میکوریز تأثیر معنی‌داری بر صفات رشدی و جذب عناصر داشت. استفاده از قارچ های میکوریزی R. intraradices و F. mosseae اثرات منفی تنش کم‌آبی را کاهش داد و افزایش رشد و جذب بیشتر عناصر را به ‌دنبال داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of water stress and mycorrhizal fungi Rhizophagus intraradices and Funneliformis mosseae on uptake of some nutrients and growth properties in lentils

چکیده [English]

Background: water deficiency is one of the most limiting factors of agricultural production in arid and semiarid areas. In recent years beneficial microorganisms were evaluated as one of the techniquesto reduce the effects of drought stress and increase sustainable agricultural production. Therefore, this study was performed to evaluate the effect of mycorrhizal fungi on growth and uptake of some elements on lentil under drought stress conditions.
Materials and Methods: Experiment was performed as factorial test in a completely randomized design including two factors, drought stress at four levels (20%, 40%, 60%, and 80% PAW) and mycorrhizal fungi at four levels (Rhizophagus intraradices and Funneliformis mosseae, a mixture of two fungal species, and control), in growth chambers at Department of Soil Science and Engineering, Tehran University, 2014. After growth period, the effect of different treatments on growth traits such as number of nodules, shoot and root dry weights, number of sheaths, chlorophyll index, root colonization, plant height and content of elements of N, P, K, Fe, and Zn in the shoot were measured and recorded. Analysis of variance and mean comparison of data were performed with SAS software and Duncan’s test (p< 0.05) respectively.
Findings: The results showed that all measured plant traits due to the effect of water stress decreased, so that dry matter of shoot, root dry weight, number of sheaths, leaf chlorophyll index, root colonization and plant height at the highest level of stress S1 than the control NS, respectively 49.99, 41.12, 11.2, 24.4, 26.06, 28.09 and 22.15 percent reduced. The interaction of water stress and mycorrhizal fungi on all measured traits except for plant height, root dry weight, chlorophyll index, zinc, phosphorus and potassium was significant (p< 0.05). All the measured traits in plants inoculated with mycorrhizal fungi were higher than the non-mycorrhizal plants. The highest number of pods, shoot dry weight and iron was obtained in the treatment of M1NS which compared to the control respectively 51, 36.07, 79.48 percent was higher. Most root colonization rate in treatment S3M2 to the 87.3 percent and lowest in treatment S1NM to the 8.25 percent were obtained respectively. Also Mycorrhizal fungi of R. intraradices, F. mosseae and mix of the two types respectively 89.2, 45.0, 33.7 percent increased the iron content in the shoot compared to the control.
Conclusion: Water stress had a negative impact on all indicators of growth, but the greatest reduction in root and shoot dry weight was seen. The use of mycorrhizal fungi had a significant effect on growth traits and nutrient uptake. The use of mycorrhizal fungi R. intraradices and F. mosseae reduced the negative effects of water stress and led to the increase of growth and more absorption of elements.
nt.

کلیدواژه‌ها [English]

  • Keywords: Drought
  • Shoot dry weight
  • root colonization
  • Iron
  • Number of sheaths
1.Alarcon, A., Davies, F.T.Jr, Egilla, J.N., Fox, T.C., Estrada-Luna, A.A., and Ferrera-Cerrato,
R. 2002. Short term effects of Glomus claroideum and Azospirillum brasilense on growth
and root acid phosphatase activity of Carica papaya L. under phosphorus stress.
Microbiologia. 44: 31-37.
2.Al-Karaki, G., McMichael, B., and Zak, J. 2004. Field response of wheat to arbuscular
mycorrhizal fungi and drought stress. Mycorrhiza. 14: 4. 263-269.
3.Ames, R.N., Reid, C.P.P., Porter, L.K., and Cambardella, C. 1983. N-15 uptake and transport
by hyphae of a vesicular-arbuscular mycorrhizal fungus. Phytopathology. 73: 840-841.
4.Amiri, M.J., and Eslamian, S.S. 2010. Investigation of climate change in Iran. J. Environ. Sci.
Technol. 3: 4. 208-216.
5.Angadi, S.V., and Entz, M.H. 2002. Water Relations of standard height and dwarf sunflower
cultivars. Crop Sci. 42. 152-159.
6.Apel, K., and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress and signal
transduction. Annual Review of Plant Biology. 55: 373-399.
7.Asgarzadeh, H., Mosaddeghi, M.R., Mahboubi, A.A., Nosrati, A., and Dexter, A.R. 2010. Soil
water availability for plants as quantified by conventional available water, least limiting
water range and integral water capacity. Plant and soil. 335: 1-2. 229-244.
8.Augé, R.M. 2004. Arbuscular mycorrhizae and soil/plant water relations. Can. J. Soil Sci.
84: 4. 373-381.
9.Augé, R.M., Toler, H.D., Moore, J.L., Cho, K., and Saxton, A.M. 2007. Comparing
contributions of soil versus root colonization to variations in stomatal behavior and soil drying
in mycorrhizal Sorghum bicolor and Cucurbita pepo. J. Plant Physiol. 164: 10. 1289-1299.
10.Balsam, M., Qaddoury, A., and Goicoechea, N. 2014. Role of native and exotic mycorrhizal
symbiosis to develop morphological, physiological and biochemical responses coping with
water droughtof date palm, Phoenix dactylifera. Trees. 28: 161-172.
11.Bárzana, G., Aroca, R., Bienert, G.P., Chaumont, F., and Ruiz-Lozano, J.M. 2014. New
insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize
plants under drought stress and possible implications for plant performance. Molecular
Plant-Microbe Interactions. 27: 4. 349-363.
12.Boby, V.U., Balakrishna, A.N., and Bagyaraj, D.J. 2008. Interaction between Glomus
mosseae and soil yeasts on growth and nutrition of cowpea. Microbiol Res. 163: 693-700.
13.Bremner, J.M., and Mulvaney, C.S. 1982. Nitrogen-Total, P 595-624. In: Page, A.L. et al.
(eds.), Methods of Soil Analysis. Agronomy Monograph 9, Part 2, 2nd Ed. American Society
of Agronomy, Madison. WI.
14.Centeno, C., Viveros, A., Brenes, A., Canales, R., Lozano A., and Cuadra, C.D. 2001.
Effect of several germination conditions on total P, phytate P, phytase and acid
phosphatase activities and inositol phosphate esters in rye and barley. J. Agric. Food Chem.
49: 3208-3214.
15.Clark, R.B., and Zeto, S.K. 2000. Mineral acquisition by arbuscular mycorrhizal plants.
J. Plant Nutr. 23:867–902
16.Cottenie, A. 1980. Soil and plant testing as a basis of fertilizer recommendations. FAO Soils
Bull 38/2 FAO, Rome.
17.Cress, W.A., Johnson, G.V., and Barton, L.L. 1986. The role of endomycorrhizal fungi in
iron uptake by Hilaria jamesii. J. Plant Nutr. 9: 3-7. 547-55.
18.Dalpé, Y. 1993. Vesicular-arbuscular mycorrhiza. In: Carter MR (Eds) Soil sampling and
methods of analysis. Lewis Publishers, Boca Raton, 287p.
19.Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S.M.A. 2009. Plant drought
stress: effects, mechanisms and management. Agronomy for Sustainable Development.
29: 185-212.
20.Fentahun, M., Akhtar, M.S., Muleta, D., and Lemessa, F. 2013. Isolation and
characterization of nitrogen deficit Rhizobium isolates and their effect on growth of haricot
bean. Afric. J. Agric. 8: 46. 5942-5952.
21.Franzini, V., Azcón, R., Mendes, F.L., and Aroca, R. 2010. Interactions between Glomus
species and Rhizobium strains affect the nutritional physiology of drought-stressed legume
hosts. J. Plant Physiol. 67: 614-619.
22.Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E., and Khodaei-Joghan, A.
2013 .Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and
irrigation water productivity of sunflowers grown under drought stress. Agricultural water
management. 117: 106-114.
23.Gong, M., Tang, M., Chen, H., Zhang, Q., and Feng, X. 2013. Effects of two Glomus species
on the growth and physiological performance of Sophora davidii seedlings under water
stress. New Forests, 44: 3. 399-408.
24.Gupta, M.L., Prasad, A., Ram, M., and Kumar, S. 2002. Effect of the vesiculararbuscula
mycorrhizal (VAM) fungus Glomus fasiculatum on the essential oil yield related characters
and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis)
under field conditions. Bioresour. Technology. 81: 77-79.
25.Hacisalihoglu, G., and Kochian L.V. 2003. How do some plants tolerate low levels of soil
zinc? Mechanisms of zinc efficiency in crop plants New Phytologist. 159: 341-350.
26.Heidari, and Carmi. 2013. Effect of drought stress and strains of mycorrhiza on yield
and grain, sunflower chlorophyll and biochemical compounds. J. Environ. Stress Farm Sci.
6: 1. 17-26. (In Farsi)
27.Hojjat, S.S. 2011. Effects of seed size on germination and seedling growth of some Lentil
genotypes (Lens culinaris Medik.). Inter. J. Agric. Crop Sci. 3: 1-5.
28.Hoque, M.A., Okuma, E., Banu, M.N.A., Nakamura, Y., Shimoishi, Y., and Murata, Y.
2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous
betaine by increasing antioxidant enzyme activities. J. Plant Physiol. 164: 5. 553-561.
29.Huang, Z., Zou, Z., He, C., He, Z., Zhang, Z., and Li, J. 2011. Physiological and
photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species
under water deficit. Plant and soil. 339: 1-2. 391-399.
30.Johansen, A. 1993. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N
applied to the soil as ammonium or nitrate. Biology and Fertility of Soils. 16: 66-70.
31.Kiani, S.P., Maury, P., Sarrafi, A., and Grieu, P. 2008. QTL analysis of chlorophyll
fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and
water-stressed conditions.Plant Sci. 175: 565-573.
32.Knudsen, D., Peterson, G.A., and Pratt, P.F. 1982. Lithium, sodium, potassium, P 225-246.
In: Page, A.L. (ed.), Methods of soil analysis, Part 2, Madison, WISC. ASA-SSSA.
33.Labidi, S., Jeddi, F.B., Tisserant, B., Yousfi, M., Sanaa, M., Dalpé, Y., and Sahraoui, A.L.H.
2015. Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage
legume (Hedysarum coronarium L.) on a highly calcareous soil. Mycorrhiza. 25: 4. 297-309.
34.Ladjal, M., Huc, R., and Ducrey, M. 2005. Drought effects on hydraulic conductivity and
xylem vulnerability to embolism in diverse species and provenances of Mediterranean
cedars. Tree Physiology. 25: 1109-1117.
35.Li, X.L., Marschner, H., and George, E. 1991. Acquisition of phosphorus and copper
by VA–mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and Soil,
136: 49-57.
36.Michalis, O., Ioannides, I.M., and Ehaliotis, C. 2013. Mycorrhizal inoculation affects
arbuscular mycorrhizal diversity in watermelon roots but leads to improved colonization and
plant response under water stress only. Appl. Soil Ecology. 63p.
37.Miransari, M., Abrishamchi, A., Khoshbakht, K., and Niknam, V. 2014. Plant hormones
assignals in arbuscular mycorrhizal symbiosis. Crit. Rev. Biotechnol. 34: 123-133.
38.Phillips, J.M., and Hayman, D.S. 1970. Improved procedures clearing roots and staining
parasitic and vesicular mycorrhizal fungi for rapid assessment of infection. Transaction of
British Mycological Society, 55: 158-161. Physiol. 164: 1289-1299.
39.Redecker, D., Schüßler, H., Stockinger, S., Stürmer, J., Morton, and Walker, C. 2013.
An evidence-based consensus for the classification of arbuscular mycorrhizal fungi
(Glomeromycota). Mycorrhiza doi: 10.1007/s00572-013-0486-y.
40.Rejali, F. 2001. Preparation of arbuscular mycorrhiza fungi inoculation by invitro method
and investigation the effect of its on nutrients uptake in wheat plant with drought stress.
Ph.D. Thesis. University of Tarbiat Modares, Tehran. 220p. (In Persian)
41.Rivand, M. 2002. In agriculture bean Publications emission of mashahir, 240p.
42.Rodriguez-Celma, J., Lin, W.D., Fu, G.M., Abadia, J., Lopez-Millan, A.F., and Schmidt, W.
2013. Mutually exclusive alterations in secondary metabolism are critical for the uptake
of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiology.
162: 1473-1485.
43.Ryan, J., Estefan, G., and Rashid, A. 2007. Soil and plant analysis laboratory manual.
ICARDA.
44.Sadolah, A.A., and Ismail, F. 2015. The effect of three species of mycorrhizal fungi on the
growth, colonization rate and root phosphorus concentration African Marigold (Targets'
erecta) J. Soil Water Tabriz Univ. 24: 4. 129-138. (In Farsi)
45.Saraswathi, S.G., and Paliwal, K. 2011. Drought induced changes in growth, leaf
gas exchange and biomass production in Albizia lebbeck and Cassia siamea seedlings.
J. Environ. Biol. 32: 2.
46.Sharda Waman, M.K., and Bernard Felinov, R. 2009. Studies on effects of arbuscular
mycorrhizal (Am) fungi on mineral nutrition of Carica papaya L. Notulae Botanicae Horti
Agrobotanici Cluj-Napoca. 37: 183-186.
47.Sharma, A.K., Srivastava, P.C., and Johri, B.N. 1994. Contribution of VA mycorrhiza to zinc
uptake in plants. Biochemistry of Metal Micronutrients in the Rhizosphere. Lewis
Publishers, Boca Raton, FL, Pp: 111-124.
48.Sheng-Li, G., Ting-Hui, D., and Ming-De, H. 2008. Phosphorus changes and sorption
characteristics in a calcareous soil under long-term fertilization. Pedosphere 18: 248-256
49.Smith, S.E., and Read, D.J. 2008. Mycorrhizal Symbiosis, third ed. Academic Press, London,
UK.
50.Subramanian, K.S., Tenshia, V., Jayalakhshmi, K., and Ramachandran, V. 2009. Role of
arbuscular mycorrhizal fungus (Glomus intraradices) - (fungus aided) in zinc nutrition of (in)
maize. J. Agric. Biotechnol. Sust. Dev. 1: 029-038.
51.Subramanian, K.S., Santhanakrishnan, P., and Balasubramanian, P. 2006. Responses of field
grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities
of drought stress. Scientia horticulturae, 107: 3. 245-253.
52.Subramanian, K.S., Tenshia, J.V., Jayalakshmi, K., and Ramachandran, V. 2011.
Antioxidant enzyme activities in arbuscular mycorrhizal (Glomus intraradices) fungus
inoculated and non-inoculated maize plants under zinc deficiency. Ind. J. Microbiol.
51: 1. 37-43.
53.Suri, V.K., Choudhary, A.K., Girish, C., Verma, T.S., Gupta, M.K., and Dutt, N. 2011.
Improving phosphorus use through co-inoculation of vesicular arbuscular mycorrhizal fungi
and phosphate solubilizing bacteria in maize in an acidic Alfisol. Communicationsin Soil
Science and Plant Analysis 42: 18. 2265-2273.
54.Tennant, D. 1975. A test of a modified line intersect method of estimating root length.
J. Ecol. 63: 995-1001.
55.Vafadar, F., Amooaghaie, R., and Otroshy, M. 2014. Effects of plant-growth-promoting
rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK and
chlorophyll content of Stevia rebaudiana. J. Plant Interact. 9: 1. 128-136.
56.Wang, M., Christie, P., Xiao, Z., Qin, C., Wang, P., Liu, J., Xie, Y., and Xia, R. 2008.
Arbuscular mycorrhizal enhancement of iron concentration by Poncirus trifoliata L. Raf and
Citrus reticulata Blanco grown on sand medium under different pH. Biology and Fertility of
Soils. 45: 65-72.
57.Whitmore, A.P., and Whalley, W.R. 2009. Physical effects of soil drying on roots and crop
growth. J. Exp. Bot. 6: 10. 2845-2857.
58.Wu, Q.S. 2011. Mycorrhizal efficacy of trifoliate orange seedlings on alleviating temperature
stress. Plant Soil Environ. 10: 459-464.
59.Wu, Q.S., and Xia, R.X. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic
adjustment and photosynthesis of citrus under well-watered and water stress conditions.
J. Plant Physiol. 163: 4. 417-425.
60.Wu, Q.S., and Zou, Y.N. 2009. Mycorrhiza has a direct effect on reactive oxygen
metabolism of drought-stressed citrus. Plant Soil Environ. 55: 10. 436-442.
61.Wu, Q.S., Xia, R.X., Zou, Y.N., and Wang, G.Y. 2007. Osmotic solute responses of
mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress. Acta Physiologiae
Plantarum. 29: 6. 543-549.
62.Wu, Q.S., Zou, Y.N., Xia, R.X., and Wang, M.Y. 2007. Five Glomus species affect water
relations of Citrus tangerine during drought stress Botanical Studies, 48: 2. 147-154.
63.Yaseen, T., Burni, T., and Hussain, F. 2013. Effect of arbuscular mycorrhizal inoculation on
nutrient uptake, growth and productivity of cowpea (Vigna unguiculata) varieties. Afric. J.
Biotechnol. 10: 43. 8593-8598.
64.Zuo, Y., Ren, L., Zhang, F., and Jiang, R.F. 2007. Bicarbonate concentration as affected by
soil water content controls iron nutrition of peanut plants in a calcareous soil. Plant Physiol
Biochem. 45: 357-364.