تاثیر باکتریهای‌حل‌کننده پتاسیم بر برخی ویژگیهای گندم و جذب پتاسیم در شرایط گلخانه‌ای

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه شهید چمران اهواز

2 دانشجو

3 هیات علمی دانشگاه شهید چمران

چکیده

سابقه و هدف: پتاسیم یکی از عناصر غذایی پرنیاز و فراوان‌ترین کاتیون جذب شده در بیشتر گیاهان است. کمبود آن باعث خشکیدگی برگ و کاهش عملکرد دانه گندم می‌شود. بیشترین مقدار پتاسیم در خاک به شکل غیرقابل دسترس برای گیاه است. برخی از باکتری‌های محرک رشد قادر به آزاد کردن پتاسیم از کانی‌های دارای پتاسیم و افزایش دسترسی آن برای جذب گیاه هستند. بنابراین این پژوهش با هدف بررسی تأثیر باکتری‌های حل‌کننده پتاسیم در بهره‌گیری گندم از پتاسیم خاک انجام شده است.
مواد و روش: این پژوهش در گلخانه با آرایش فاکتوریل در قالب طرح کاملاً تصادفی در 3 تکرار انجام شد. فاکتورهای آزمایش چهار سطح باکتری (شاهد بدون مایه زنی، مایه زنی با انتروباکتر کلوزه، مایه زنی با سودوموناس و مایه زنی با هردو باکتری) و دو سطح کود سولفات پتاسیم (صفر درصد و 50 درصد نیازی کودی) بودند. طی دوره آزمایش شاخص‌هایی مانند ارتفاع گیاه و شاخص کلروفیل اندازه‌گیری شد. در پایان دوره کشت، وزن خشک ریشه و اندام هوایی و مقدار پتاسیم در ریشه، ساقه و دانه (پس از خاکستر‌‌گیری از اندام گیاه) به کمک فروخ سنج اندازه‌گیری شد. عملکرد دانه (5 بوته در گلدان) و مقدار جذب پتاسیم در دانه نیز محاسبه شد. همچنین مقدار پتاسیم تبادلی خاک با استفاده از استات آمونیوم اندازه‌گیری شد.
نتایج: مقدار پتاسیم تبادلی خاک با کاربرد هر یک از تیمارهای باکتری نسبت به تیمار شاهد افزایش معناداری را در سطح یک درصد نشان داد. بیشترین مقدار پتاسیم تبادلی خاک به ترتیب در حضور انتروباکتر کلوزه، مخلوط دو باکتری و سودوموناس با افزایش 7/15 %، 8 % و 8/5 % نسبت به شاهد مشاهده شد. تاثیر تیمار‌های باکتری بر مقدار کلروفیل، ارتفاع بوته و وزن خشک ریشه در سطح یک درصد و بر مقدار وزن خشک ساقه در سطح پنج درصد معنا‌دار بود. بیشترین مقدار عملکرد دانه در حضور انتروباکتر ‌کلوزه و مخلوط دو باکتری به ترتیب با 5/14 % و 5/4 % افزایش نسبت به شاهد به‌دست آمد. بیشترین مقدار غظت پتاسیم در ریشه و ساقه به ترتیب با افزایش 5/40 % و 9/50 % نسبت به تیمار شاهد در حضور انتروباکتر کلوزه مشاهد شد. همچنین بیشترین مقدار غلظت و جذب پتاسیم دانه در حضور انتروباکتر کلوزه و پس از آن مخلوط دو باکتری مشاهده شد.
نتیجه‌گیری: بر اساس نتایج به دست آمده بیشینه تمام ویژگی‌های اندازه‌گیری شده در تیمار دارای انتروباکتر کلوزه نشان دهنده امکان استفاده از آن در کاهش مصرف کودهای شیمیایی در راستای تولید بهینه محصول و کشاورزی پایدار است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Potassium Solubilizing Bacteria on Some Properties of Wheat and Potassium uptake at Greenhouse Condition

چکیده [English]

Background and Objectives: Potassium is one of the mostly needed essential nutrients and also abundant absorbed cation by the plants. Due to imbalanced fertilizer application, potassium deficiency is becoming one of the major constraints in crop production. Potassium deficiency resulted leaves dieback and grain yield reduction of wheat. Most of potassium in soil exists in the form of unavailable for plant. Plant growth promoting bacteria have the ability to increase the availability of nutrients for plant uptake. This study aimed to investigate the effect of potassium solubilizing bacteria to utilize soil potassium by wheat.
Material and Methods: The factorial experiment was conducted at greenhouse condition as a randomized complete design at three replications. Treatments consisted of four levels of bacteria (without inoculation (control), inoculation with Enterobacter cloacae R33, inoculation with Pseudomonas sp, inoculation with both Enterobacter cloacae R33 and Pseudomonas sp) and two levels of K2So4 (0 % and 50 % of potassium requirement). During the experiment, plant height and chlorophyll index were measured. At the end of cultivation period, dry weight of root and aerial part and also potassium concentration of root, shoot and grain was determined using flame photometer after dry digestion. Grain yield (5 shrubs per pot) and potassium uptake in grain was also determined. Exchangeable potassium of soil was measured using ammonium acetate.
Results: Soil exchangeable potassium content using any of the bacterial treatments compared to control showed a significant increase (P<0.01). The maximum amount of soil exchangeable potassium were respectively observed in the presence of Enterobacter cloacae R33, both bacterium application and Pseudomonas sp with 15.7%, 8% and 5.8% increment compared to the control. The effect of bacterial treatments were significant on chlorophyll content, plant height and root dry weight (P<0.01) and on the amount of shoot dry weight (P<0.05). Application of Enterobacter cloacae and afterward both bacteria caused the highest grain yield with 14.5% and 4.5% increment compared to the control. The maximum amount of potassium concentration in roots and shoots was observed in the treatments containing Enterobacter cloacae with 40/5% and 50/9% increment compared to the control. The maximum concentration and of potassium concentration and uptake in grain were observed in the presence of Enterobacter cloacae which followed by both bacteria.
Conclusion: The Maximum amounts of all measured properties in the treatment containing Enterobacter cloacae indicating possibility of its application as proper alternative of chemical fertilizer to reach optimal production and sustainable agriculture.

کلیدواژه‌ها [English]

  • fertilizer
  • growth
  • potassium
  • uptake
  • Yield
1.Bacilio, M., Rodriguez, H., Moreno, M., Hernandez, J.P., and Bashan, Y. 2004. Mitigation of
salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol. Fertil. Soils.
40: 3. 188-193.
2.Bevan, J., and Savage, D. 1989. The effect of organic acids on the dissolution of K-feldspar
under conditions relevant to burial diagenesis. Mineral. Mag. 53: 415-425.
3.Chen, J., Blume, H., and Lothar, B. 2000. Weathering of Rocks Induced by Lichen
Colonization: A Review. Catena. 39: 121-146.
4.Egamberdiyeva, D., and Höflich, G. 2003. Influence of growth-promoting bacteria on the
growth of wheat in different soils and temperatures. Soil Biol. Biochem. 35: 7. 973-978.
5.Friedrich, S., Platonova, N.P., Karavaiko, G.I., Stichel, E., and Glombitza, F. 1991. Chemical
and microbiological solubilization of silicates. Acta Biotechnol. 11: 3. 187-196.
6.Girgis, M.G.Z. 2006. Response of wheat to inoculation with phosphate and potassium
mobilizers and organic amendment. Annals of Agricultural Science (Cairo). 51: 1. 85-100.
7.Glick, B.R. 2004. Bacterial ACC deaminase and the alleviation of plant stress. Adv. Appl.
Microbiol. 56: 291-312.
8.Goldstein, A. 1994. Involvement of the quinoprotein glucose dehydrogenase in the
solubilization of exogenous phosphates by gram-negative bacteria. P 197-203, In: A.
Torriani-Gorini, E. Yagil and S. Silver (Eds.), Phosphate in Microorganisms: Cellular and
Molecular Biology. ASM Press, Washington, DC.
9.Gupta, P.K. 2004. Soil, Plant, Water and Fertilizer Analysis. Agrobios (India), 438p.
10.Haghighi, H., Sam Daliri, M., Mobaser, H.R., and Abbas Moosavi, A. 2011. Effect of
different nitrogen and potassium fertilizer levels on quality and quantity yield of flue-cured
tobacco (Coker 347). World J. Appl. Sci. 15: 941-946.
11.Han, H.S., and Lee, K.D. 2005. Phosphate and potassium solubilizing bacteria effect on
mineral uptake, soil availability and growth of eggplant. Res. J. Agric. Biol. Sci. 1: 2. 176-180.
12.Klute, A. 1986. Methods of soil analysis, Part 1: physical and mineralogical methods.
Soil Science Society of America, Madison, WI.
13.Lamizadeh, E., Enayatizamir, N., and Motamedi, H. 2016. Isolation and identification of
plant growth-promoting rhizobacteria (PGPR) from the rhizosphere of sugarcane in saline
and non-saline soil. Int. J. Curr. Microbiol. Appl. Sci. 5: 10. 1072-1083.
14.Lin, D., Huang, D., and Wang, S. 2004. Effects of potassium levels on fruit quality of
muskmelon in soilless medium culture. Sci. Hort. 102: 53-60.
15.Malakouti, M.J., and Gheibi, M.N. 2000. Determination of critical levels of nutrients in soil,
plant and fruit for the quality and yield improvements in strategic crops of Iran. High
Concoil for Appropriate Use of Pesticides and Chemical Fertilizers, Ministry of Agriculture,
92p. (In Persian)
16.Malinovskaya, I.M., Kosenko, L.V., Votselko, S.K., and Podgorskii, V.S. 1990. Role of
Bacillus mucilaginosus polysaccharide in degradation of silicate minerals. Microbiology.
59: 1. 49-55.
17.Maurya, B.R., Meena, V.S., and Meena, O.P. 2014. Influence of Inceptisol and Alfisol’s
potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos.
27: 1. 181-187.
18.Mirzashahi, K., Asadi, R.H., Khavazi, K., and Afshari, M. 2013. Effect of two kinds of
biofertilizers on irrigated wheat yield in the north of Khuzestan. Iran. J. Soil Res. 27: 2. 159-168.
(In Persian)
19.Munson, R.D. 1985. Potassium in agriculture. American Society of Agronomy, Pp: 754-794.
20.Okon, Y. 1985. Azospirillum as potential inoculants for agriculture. Trends Biotechnol.
3: 223-228.
21.Parmar, P. 2010. Isolation of potassium solubilizing bacteria and their inoculation effect on
growth of wheat (Triticum aestivum L. em. Thell.). M.Sc. Thesis. Microbiology, CCS
Haryana Agricultural University, Hisar, India.
22.Pettigrew, W.T. 2008. Potassium influences on yield and quality production for maize,
wheat, soybean and cotton. Physiol. Plant. 133: 4. 670-681.
23.Ramarethinam, S., and Chandra, K. 2005. Studies on the effect of potash solubilizing/
mobilizing bacteria Frateuria aurantia on brinjal growth and yield. Pestology. 11: 35-39.
24.Shanware, A.S., Kalkar, S.A., and Trivedi, M.M. 2014. Potassium solubilizes: occurrence,
mechanism and their role as competent biofertilizers. Int. J. Curr. Microbiol. Appl. Sci.
3: 622-629.
25.Sheng, X.F. 2005. Growth promotion and increased potassium uptake of cotton and rape by a
potassium releasing strain of Bacillus edaphicus. Soil. Biol. Biochem. 37: 1918-1922.
26.Sheng, X.F., and He, L.Y. 2006. Solubilization of potassium-bearing minerals by a wild-type
strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat.
Can. J. Microbiol. 52: 1. 66-72.
27.Sheng, X.F., He, L.Y., and Huang, W.Y. 2002. The conditions of releasing potassium by a
silicate-dissolving bacterial strain NBT. Agricultural Sciences in China. 1: 6. 662-666.
28.Sindhu, S.S., Dua, S., Verma, M.K., and Khandelwal, A. 2010. Growth promotion of
legumes by inoculation of rhizosphere bacteria. P 195-235, In: M. Saghir Khan, J. Musarrat
and A. Ziadi (Eds.), Microbes for legume improvement. Springer, Vienna.
29.Singh, G., Biswas, D.R., and Marwaha, T.S. 2010. Mobilization of potassium from waste
mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and
wheat (Triticum aestivum L.): a hydroponics study under phytotron growth chamber. J. Plant
Nutr. 33: 8. 1236-1251.
30.Song, S.K., and Huang, P.M. 1988. Dynamics of potassium release from potassium-bearing
minerals as influenced by oxalic and citric acids. Soil Sci. Soc. Am. J. 52: 2. 383-390.
31.Sparks, D.L., and Huang, P.M. 1985. Physical chemistry of soil potassium. Potassium in
agriculture, Section II: Potassium in Soils. American Society of Agronomy, Crop Science
Society of America, Soil Science Society of America, Pp: 201-276.
32.Sparks, D.L. 1987. Potassium Dynamics in Soils. In: Stewart B.A. (Eds), Advances in Soil
Science. Advances in Soil Science, Vol 6. Springer, New York, NY.
33.Sturz, A.V., and Christie, B.R. 2003. Beneficial microbial allelopathies in the root zone: the
management of soil quality and plant disease with rhizobacteria. Soil Tillage Res. 72: 2. 107-123.
34.Sugumaran, P., and Janarthanam, B. 2007. Solubilization of potassium containing minerals
by bacteria and their effect on plant growth. WJAS. 3: 3. 350-355.
35.Tale Ahmad, S., and Haddad, R. 2011. Study of silicon effects on antioxidant enzyme
activities and osmotic adjustment of wheat under drought stress. Czech J. Genet. Plant
Breed. 47: 1. 17-27.
36.Vessey, F. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil.
255: 2. 571-586.
37.Wani, S.P. 1990. Inoculation with associative nitrogen fixing bacteria: role in cereal grain
production improvement. Ind. J. Microbiol. 30: 4. 363-393.
38.Zeng, X., Liu, X., Tang, J., Hu, S., Jiang, P., Li, W., and Xu, L. 2012. Characterization and
potassium-solubilizing ability of Bacillus Circulans Z1-3. Adv. Sci. Lett. 10: 1. 173-176.
39.Zhang, C., and Kong, F. 2014. Isolation and identification of potassium-solubilizing bacteria
from tobacco rhizospheric soil and their effect on tobacco plants. Appl. Soil Ecol. 82: 18-25.