شبیه‌سازی هدررفت عناصر غذایی خاک در حوضه سد قشلاق با استفاده از مدل SWAT

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش آموخته دانشگاه آزاد اسلامی واحد سنندج

2 عضو هیات علمی دانشگاه آزاد اسلامی واحد سنندج

چکیده

سابقه و هدف: یکی از اثرات بسیار مضر فرآیندهای فرسایشی از دست رفتن مواد غذایی خاک به وسیله رواناب و رسوب ناشی از فرسایش می‌باشد. نیتروژن و فسفر از عناصر غذایی اصلی خاک در حوضه‌های آبخیز هستند، اما انباشتگی این عناصر در آب رودخانه‌ها و آبراهه‌ها یکی از موضوعات مهم در هدررفت عناصر غذایی خاک بوده و می‌تواند منجر به رشد گیاهان آبزی، جلبک‌ها و پدیده یوتریفیکاسیون آب‌ها گردد. هدف از این تحقیق شبیهسازی میزان فسفر و نیتروژن کل حمل شده توسط رواناب و رسوب در زیر حوضه‌های سد قشلاق، تهیه نقشه‌ی مناطق هدررفت عناصر غذایی در سطح حوضه و تعیین زیر حوضه‌های بحرانی با استفاده از مدل SWAT (Soil and Water Assessment Tool) است.
مواد و روش‌ها: در این پژوهش برای شبیه‌سازی باررسوب و بررسی میزان هدرروی عناصر غذایی خاک، از مدل پیوسته و نیمه توزیعی SWAT استفاده شد. بدین منظور ابتدا اقدام به جمع‌آوری نقشه‌های مدل رقومی ارتفاع، شبکه آبراهه، کاربری و خاک شد. پایگاه داده‌های اقلیم، خصوصیات خاک و مدیریت برای حوضه آبخیز سد قشلاق تهیه شد. پس از اجرای مدل از داده‌های مشاهده‌ای رواناب، رسوب و کیفیت آب سال‌های 1993 تا 2003 برای واسنجی مدل و داده‌های مشاهداتی سال‌های 2004 تا 2007 برای اعتبارسنجی مدل با استفاده از الگوریتم SUFI-2 استفاده گردید.
یافته‌ها: نتایج نشان داد که مدل SWAT دبی، باررسوب، فسفر و نیتروژن حوضه سد قشلاق را به خوبی شبیه‌سازی کرده است. به عنوان مثال ضرایب R2، NS، r-factor و p-factor برای واسنجی رواناب ماهانه در ایستگاه چهلگزی به ترتیب 80/0، 72/0، 78/0 و 52/0 و در ایستگاه خلیفه‌ترخان و 82/0، 74/0، 80/0 و 54/0 برآورد شد. این ضرایب برای فسفر در ایستگاه چهلگزی به ترتیب 68/0، 63/0، 39/0 و 55/0 و در ایستگاه خلیفه‌ترخان 69/0، 66/0، 55/0 و 49/0 می‌باشد. وضعیت حوضه برای حمل نیتروژن آلی، نیترات، فسفر آلی، فسفر محلول و فسفر معدنی به ترتیب 323، 12، 48، 18/0 و 71 کیلوگرم بر هکتار، شبیه‌سازی شد. بیشترین منابع هدررفت عناصر خاک به ترتیب در زیر حوضه‌های شماره 50، 47، 43، 51، 48، 34 و 31 قرار دارند که منشاء حدود 30 درصد هدررفت عناصر خاک در حوضه می‌باشند.
نتیجه‌گیری: نتایج نشان داد که این مدل می‌تواند به‌طور کار‌آمدی برای تعیین زیر حوضه‌های بحرانی از نظر تلفات مواد مغذی فسفر و نیتروژن به کار گرفته شود. زیر حوضه‌های دارای کاربری زراعی بر روی اراضی شیبدار غرب حوضه، دارای وضعیت بحرانی از نظر هدررفت عناصر غذایی خاک هستند. به منظور کنترل هدررفت عناصر غذایی خاک حوضه آبخیز سد قشلاق، بهترین عملیات مدیریتی، کاهش و کنترل کودهای شیمیایی نیترات و فسفات، تبدیل زمین کشاورزی شیبدار به مراتع و جنگلکاری و نهایتاً ایجاد یک منطقه حائل در طول رودخانه می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Soil nutrient Loss Simulation in Gheshlagh Dam Basin Using SWAT Model

چکیده [English]

Abstract
Background and objectives: One of the harmful effects of erosion processes is soil nutrient loss by runoff and sediment. Nitrogen and phosphorus are the main nutrients of soil in watersheds, but the accumulation of these elements in rivers and channels is the one of the most important issues in the nutrient soil loss, that can lead to the growth of aquatic plants, algae and led to Eutrophication phenomena. The aim of this study is to simulate the amount of total phosphorus and nitrogen that carried by runoff and sediment in the sub-basins of the Gheshlagh dam basin, mapping of nutrient loss in the basin and determining the critical sub-basins using the Soil and Water Assessment Tool (SWAT) model.
Materials and methods: To simulate the sediment load and the amount of soil nutrients loss, continuous and semi-distributed SWAT model was used. For this purpose, at first the DEM, network of streams, land use and soil maps were collected. The climate, soil and management databases were prepared for Gheshlagh dam basin. The observation data of runoff, sediment and water quality of 1993 to 2003 years were used for model calibration and those for 2004 to 2007 years were used for model validation using the SUFI-2 algorithm.
Results: The results showed that the SWAT model has simulated discharge, sediment, phosphorus and nitrogen in Gheshlagh dam basin very well. For example, the R2, NS, r-factor and p-factor coefficients for monthly runoff calibration in Chehelgazi station were estimated 0.80, 0.72, 0.78 and 0.52 respectively and in Khalyfetarkhan station 0.82, 0.74, 0.80 and 0.54. The coefficients for phosphorus in Chehelgazi station are 0.68, 0.63, 0.39 and 0.55 respectively and in Khalyfetarkhan station 0.69, 0.66, 0.55 and 0.49. The organic nitrogen, nitrate, organic phosphorus, soluble phosphorus, and mineral phosphorus were estimated to be 323, 12, 48, 0.18 and 71 kg per hectare, receptively. The sub-basins with highest sources of soil loss are 50, 47, 43, 51, 48, 34 and 31 sub-basins, respectively, which are the source of about 30 percent of total nitrogen and phosphorus load in the basin.
Conclusion: The results showed that the model can be effectively applied to determine the critical sub-basins with regard to nitrogen and phosphorus loss. The cultivated lands on steep slopes in west of basin have critical situation in terms of soil nutrient loss. In order to control soil nutrient loss of Gheshlagh dam watershed, the best management practices are reduction and control of nitrate and phosphate fertilizers, conversion of agricultural land to rangeland or forest in slopes and also creating a buffer zone along the river to reduce nitrogen and phosphorus losses entering to the reservoir basin.

کلیدواژه‌ها [English]

  • Nutrient Loss
  • Phosphorus
  • Nitrogen
  • SWAT
  • SUFI-2
1.Abbaspour, K.C., Rouholahnejad, E.,
Vaghefi, S., Srinivasan, R., Yang, H., and
Klove, B. 2015. A continental-scale
hydrology and water quality model
for Europe: calibration and uncertainty
of a high-resolution large-scale SWAT
model. J. Hydrol. 524: 733-752.
2.Aditya, S., and Williams, FR. 2010.
Evaluation of best management practices
in Millsboro pond watershed using soil
and water assessment tool (SWAT)
model. J. Water Resour. Prot. (JWARP)
2: 403-412.
3.Arnold, J.G., Srinivasan, R., Muttiah,
R.S., and Williams, J.R. 1998. Large area
hydrologic modeling and assessment part
I: model development. J. Am. Water
Resour. Assoc. 34: 1. 73-89.
4.Bärlund, I., Kirkkala, T., Malve, O., and
Kämäri, J. 2007. Assessing the SWAT
model performance in the evaluation of
management actions for the implementation
of the Water Framework Directive in a
Finnish catchment. Environ. Model Sof.
22: 5. 719-724.
5.Bouraoui, F., Galbiati, L., and Bidoglio,
G. 2002. Climate change impacts on
nutrient loads in the Yorkshire Ouse
catchment (UK). Hydr. Earth Sys. Sci.
6: 2. 197‐ 209.
6.Chen, Y., Shuai, J., Zhang, Z.H., Shi, P.,
and Tao, F. 2014. Simulating the impact
of watershed management for surface
water quality protection: A case study on
reducing inorganic nitrogen load at a
watershed scale. Eco. Engi. 62: 61-70.
7.Cheng, H., Ouyang, W., Hao, F., Ren,
X., and Yang, S. 2006. The nonpoint
source pollution in livestock breeding
areas of the Heihe River basin in Yellow
River. Stoch. Environ. Res. Risk Asses.
21: 3. 213-22.
8.Dregne, H.E. 1992. Erosion and soil
productivity in Asia. J. Soil Water Cons.
47: 8-13.
9.Etaraf, H. 2000. Effects of the operation
of loess soil land on fertility and soil
erosion of Maravetappe, M.Sc. Thesis,
Department of Rangeland and Watershed
Management. Gorgan University of
Agricultural Sciences and Natural Resources.
121p. (In Persian)
10.Ghaffari, G., Keesstra, S., Ghodousi, J.,
and Ahmadi, H. 2010. SWAT-simulated
hydrological impact of land-use change
in the Zanjanrood basin, Northwest Iran.
Hydro. Proc. 24: 7. 892-903.
11.Gassman, P.W., Reyes, M.R., Green,
C.H., and Arnold, J.G. 2007. The soil
and water assessment tool: Historical
development, applications and future
research directions. T. ASABE.
50: 4. 1211-1250.
12.Gikas, G.D., Yiannakopoulou, T., and
Tsihrintzis, VA. 2005. Modeling of
nonpoint source pollution in a
Mediterranean drainage basin. Environ.
Model. Assess. 11: 3. 219-233.
13.Lam, Q.D., Schmaltz, B., and Fohrer, N.
2012. Assessing the spatial and temporal
variations of water quality in lowland
areas, northern Germany. J. Hydrol.
438-439: 137-147.
14.Lenhart, T., Fohrer, N., and Frede, H.G.
2003. Effects of land use changes on the
nutrient balance in mesoscale catchments.
Phy. Chem. Earth. 27: 9-10. 645-654.
15.Massoud, M.A., El-Fadel, M., Scrimshaw,
M.D., and Lester, J.N. 2006. Factors
influencing development of management
strategies for the Abou Ali River in
Lebanon-I: spatial variation and land use.
Sci. Total Environ. 362: 15-30.
16.McElroy, A.D., and Chiu, S.Y. 1976.
Loading function for assessment of
water pollution from nonpoint sources.
Environ. Prot. Age. 12: 76-151.
17.Mhajy-Ashjae, M.H. 1984. The principles
of land evaluation. Ministry of
Agriculture, Department of Agricultural
Research & Education, Soil and Water
Research Institute. Publication 655,
Tehran. 87p. (In Persian)
18.Naramngam, S., and Tony, S.T.Y. 2013.
Environmental and economic implications
of various conservative Agricultural
practices in the little Miami River basin.
Agri. Water Mon. 119: 65-79.
19.Neitsch, S.L., Arnold, J.G., Kiniry, J.R.,
and Williams, J.R. 2013. SWAT user
manual, version 2012. Texas Water
Resources Institute Technical Report.
A & M University. Texas. USA. 340p.
20.Neitsch, S.L., Arnold, J.G., Kiniry, J.R.,
Williams, J.R., and King, K.W. 2002. Soil
and Water Assessment Tool Theoretical
Documentation-Version 2000. Grassland,
Soil and Water Research Laboratory,
Agricultural Research Service and Black
land Research Center. Texas Agricultural
Experiment Station. Temple, Texas. 245p.
21.Neitsch, S.L., Arnold, J.G., Kiniry,
J.R., and Williams, J.R. 2011. SWAT
user manual, version 2009. Texas
Water Resources Institute Technical
Report. A & M University. Texas, USA.
340p.
22.Omani, N. 2006. Modeling the
estimation of sediment potential input to
reservoir by using of satellite imaging
and SWAT model. M.Sc. Thesis of
Sharif University. 130p. (In Persian)
23.Omani, N., Tajrishi, M., and Abrishami,
A. 2007. Simulation the flow of rivers
using the SWAT model and GIS.
Seventh International of River
Engineering. University of Chamran,
Ahvaz. 8p. (In Persian)
24.Pourabdollah, M., and Tajrishi, M. 2008.
Modeling the erosion of catchment by
RUSLE and SWAT models. Seventh
International Conference of Civil
engineering. 11p. (In Persian)
25.Ramos, M.C., Marti´nez-Casasnovas,
J.A. 2006. Nutrient losses by runoff in
vineyards of the Mediterranean Alt
Penede`s region (NE Spain). Agric.
Ecosyst. Environ. 113: 356-363.
26.Rihanitabar, E. 2006. Nitrate, agriculture
and environment transportation. Tabriz
University Press. 156p. (In Persian)
27.Rostamian., R. 2006. Estimation of
runoff and sediment in Beheshtabad in
Northern Karun Using SWAT 2000,
MA thesis of soil science. Faculty of
Agriculture, University of Isfahan. 134p.
(In Persian)
28.Santhi, C., Arnold, J.G., Williams, J.R.,
Dugas, W.A., Srinivasan, R., and
Hauck, L.M. 2001. Validation of the
SWAT model on a large river basin with
point and nonpoint sources. J. Am.
Water Resour. Assoc. 37: 5. 1169-1188.
29.Shen, Z., Hong, Q., Yu, H., and Niu, J.
2010. Parameter uncertainty analysis of
non-point source pollution from
different land use types. Sci. Total
Environ. 408: 8. 1971-1978.
30.Vander Zanden, M.J., Vadeboncoeur,
Y., Diebel, M.W., and Jeppesen, E.
2005. Primary consumer stable nitrogen
isotones as indicators of nutrient source.
Environ. Sci. Technol. 39: 7509-15.
31.White, K.L., and Chaubey, I. 2005.
Sensitivity analysis, calibration and
validations for a multisite and
multivariable SWAT model. J. Amer.
Water Resour. Assoc. 41: 5. 1077-1089.
32.Williams, J.R. 1975. Sediment-Yield
Prediction with Universal Equation Using
Runoff Energy Factor. P 244-252. In:
Present and Prospective Technology for
Predicting Sediment Yield and Sources,
US Department of Agriculture, Agriculture
Research Service, Washington DC.
33.Yang, J., Reichert, P., Abbaspour, K.C.,
Xia, J., and Yang, H. 2008. Comparing
uncertainty analysis techniques for
aSWAT application to Chaohe Basin in
China. J. Hydrol. 358: 1-23.
34.Yousefifard, M., Khademi, H., and
Jalalian, A. 2007. Soil degradation
through land use changes of rangeland
in Cheshme Ali area of Charmahal and
Bakhtiari province. J. Agri. Sci. Natur.
Resour. 14: 1. 1-10. (In Persian)