بررسی قابلیت تعمیم‌پذیری نتایج حاصل از مطالعات نقشه‌برداری رقومی به‌منظور پیش‌بینی کلاس‌های خاک (مطالعه‌ی موردی: دشت شهرکرد، استان چهارمحال و بختیاری)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه شهرکرد

2 گروه علوم خاک/ دانشکده کشاورزی/ دانشگاه شهرکرد

چکیده

سابقه و هدف: در روش نقشه‌برداری رقومی، تغییرات خاک بر اساس ارتباط پارامترهای محیطی با کلاس‌ها یا ویژگی‌های خاک تعیین می‌گردد. بنابراین، اگر دو منطقه از نظر پارامترهای محیطی مشابه باشند این انتظار وجود دارد که مدل به‌دست آمده برای تخمین کلاس‌های خاک در یک منطقه، قابل تعمیم به منطقه‌ی دیگر نیز باشد. از این رو، در این پژوهش قابلیت تعمیم-پذیری نتایج حاصل از مطالعات نقشه‌برداری رقومی به مناطق مشابه برای پیش‌بینی کلاس‌های خاک بر مبنای دو سامانه‌ی رده-بندی آمریکایی و رده‌بندی جهانی بررسی شد.
مواد و روش‌ها: در اراضی دشت شهرکرد استان چهارمحال و بختیاری دو منطقه به‌عنوان نمونه و تعمیم در نظر گرفته شد. در منطقه‌ی تعمیم، 15 خاک‌رخ با فواصل تقریبی 750 متر حفر، تشریح و نمونه‌برداری شدند و ویژگی‌های فیزیکی و شیمیایی آن‌ها تعیین گردیدند. سپس، رده‌بندی خاک‌رخ‌ها بر مبنای سامانه‌های رده‌بندی آمریکایی (تا سطح گروه بزرگ) و رده‌بندی جهانی (تا سطح گروه مرجع) نهایی گردید. با استفاده از فاصله ماهالانوبیس میزان شباهت خاک‌های دو منطقه‌ی مذکور تعیین گردید. سپس، مدل‌های توسعه‌یافته (درختان تصمیم‌گیری تصادفی، رگرسیون درختی توسعه‌یافته، رگرسیون لاجیستیک چند جمله‌ای و شبکه‌های عصبی مصنوعی) در منطقه‌ی نمونه، برای پیش‌بینی کلاس‌های خاک در منطقه‌ی تعمیم استفاده شدند. بر اساس پارامترهای محیطی انتخاب‌شده در منطقه‌ی نمونه، پارامترهای محیطی برای منطقه‌ی تعمیم نیز تهیه گردیدند. کلاس‌های خاک برای منطقه‌ی تعمیم بر اساس مدل‌های موجود، پیش‌بینی شدند و بر اساس شاخص صحت عمومی کارایی مدل‌ها ارزیابی گردید.
یافته‌ها: نتایج نشان داد که بر اساس فاصله‌ی ماهالانوبیس مناطق نمونه و تعمیم کاملا مشابه می‌باشند. همچنین، نتایج حاکی از آن است که مشابهت بسیار بالای مناطق مورد مطالعه موجب شده است که در سطوح رده و زیررده بر مبنای سامانه رده‌بندی آمریکایی و سطح گروه مرجع در سامانه‌ی رده‌بندی جهانی، تخمین صحیحی برای منطقه‌ی تعمیم صورت پذیرد. از سوی دیگر، نتایج گویای آن است که مقادیر صحت عمومی برای پیش‌بینی کلاس‌های خاک با افزایش سطح رده بندی (رده به گروه بزرگ) در هر دو منطقه نمونه و تعمیم، کاهش نشان داد.
نتیجه‌گیری: نتایج پژوهش حاکی از آن است که روش نقشه‌برداری رقومی توانایی پیش‌بینی کلاس‌های خاک در شرایط مشابه (مشابه از نظر پارامترهای محیطی و فاکتورهای خاک‌سازی) را دارا می‌باشد اگرچه، برای سطوح پایین رده‌بندی در پیش‌بینی و تعمیم پذیری نتایج، ممکن است از صحت کافی برخوردار نباشد. به‌نظر می‌رسد سطح و سامانه‌ی رده‌بندی مورد نظر، توزیع مکانی خاک‌ها، تراکم نمونه‌برداری و نوع پارامترهای محیطی مورد استفاده از مهم‌ترین عواملی می‌باشند که می‌توانند صحت پیش‌بینی کلاس‌های خاک در مناطق تعمیم را تحت تأثیر قرار ‌دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Generalization of digital soil mapping results for prediction of soil classes (A Case Study: Shahrekord Plain, Chaharmahal-Va-Bakhtiari Province)

نویسنده [English]

  • zohreh mosleh 2
2 soil science department/ shahrekord univeristy
چکیده [English]

Background and objectives: Digital soil mapping (DSM) predicts the soil variability based on the relationship between the soil classes and auxiliary information. Therefore, it is expected that if two regions have similar auxiliary information, the model developed to estimate soil variability for one of these regions could be generalized to the other. The aim of this study was to predict the soil classes up to great group level of Soil Taxonomy (ST) and Reference Soil Group (RSG) level of World Reference Base for the Soil Resources (WRB) across the area with little soil data (recipient site) on the basis of constructed model in area that has sufficient soil data (reference site) using DSM approaches in the Shahrekord plain of Chaharmahal-Va-Bakhtiari Province.
Materials and methods: The reference and recipient sites are located in the Shahrekord region of Chaharmahal-Va-Bakhtiari Province. The Mahalanobis distance is used to determine the distance between the mean of the reference’s soil forming factors and the recipient’s soil forming factors (Mallavan et al. 2010). The reference site for this study was surveyed using digital soil mapping approaches at semi-detailed scale (i.e., raster maps with pixel size 50×50 m) up to family level by Mosleh (2016). Different machine learning algorithms consisting of artificial neural networks (ANNs), boosted regression tree (BRT), random forest (RF) and multinomial logistic regression (MLR) were considered for each soil taxonomic level to identify the relationship between soil classes and auxiliary information. Fifteen pedons were excavated at the recipient site with 750 m intervals. All the pedons were described and the soil samples were taken from different genetic horizons, air dried, crashed and passed through a 2 mm sieve. The soil samples were classified the soils according to the Soil Taxonomy (Soil Survey Staff 2014) and the WRB (IUSS Working Group WRB 2015) up to great group and Reference Soil Group levels, respectively.
Results: The results showed that the Mahalanobis distance at the reference and recipient sites is equal. Therefore, the two studied sites are entirely similar and can be considered as Homosoil. Summary statistics of auxiliary information for the reference and recipient sites indicated that the difference between the mean of the reference’s soil forming factors and the recipient’s soil forming factors is negligible. Extrapolated models across the recipient site lead to similar results with the reference site. These results include: (i) no significant differences were observed between different models to predict soil classes based on the ST system; (ii) OA values showed a decreasing trend with increasing the taxonomic levels for all the studied models (Figure 3); (iii) the MLR model has the highest performance to predict the RSG.
Conclusion: The results indicated that DSM could be used for prediction of the soil classes in the Homosoil framework (both sites have similar auxiliary information or soil forming factors). It is expected that the accuracy of predictions is accrued if there is a high agreement between the reference and the recipient sites in terms of the auxiliary information.

کلیدواژه‌ها [English]

  • Auxiliary information
  • Mahalanobis distance
  • recipient and reference sites
1.Bagheri Bodaghabadi, M., Salehi, M.H.,
Esfandiarpoor Borujeni, I., Mohammadi,
J., Karimi Karouyeh, A., and Toomanian,
N. 2012. Evaluation and Generalization
of SoLIM for Digital Soil Mapping Using
Digital Elevation Model and its
Attributes. Isfahan, J. Sci. Tech. Agric.
Natur. Res. Water and Soil Science.
16: 155-166. (In Persian)
2.Batjes, N.H. 2009. Harmonized soil profile
data for applications at global and
continental scales: updates to the WISE
database. Soil. Use. Manage. 25: 124-127.
3.Brungard, C.W., Boettinger, J.L.,
Duniway, M.C., Wills, S.A., and Edwards
Jr, T.C. 2015. Machine learning for
predicting soil classes in three semi-arid
landscapes. Geoderma. 239-240: 68-83.
4.Congalton, R. 1991. A review of
assessing the accuracy of classifications
of remotely sensed data. Rem. Sen.
Environ. 37: 35-46.
5.Esfandiarpoor Borujeni, I., Salehi, M.H.,
Toomanian, N., Mohammadi, J., and
Poch, R.M. 2009. The effect of survey
density on the results of geopedological
approach in soil mapping: A case study in
the Borujen region, Central Iran. Catena.
79: 18-26.
6.Esfandiarpoor Borujeni, I., Salehi, M.H.,
Toomanian, N., Mohammadi, J. 2009.
The effect of location of sample area and
expert knowledge on the results of
geopedological approach in soil mapping,
a case study: Borujen area, Chaharmahal-
Va-Bakhtiari province. Isfahan, J. Sci
Tech. Agric. Natur. Res. Water and Soil
Science. 13: 113-127. (In Persian)
7.Goodman, J.M., and Owens, P.R. 2012.
Predicting soil organic carbon using
mixed conceptual and geostatistical
models. P 155-159. In: B. Minasny et al.
(eds.) Digital Soil Assessments and
Beyond. CRC Press. London.
8.Grunwald, S. 2009. Multi-criteria
characterization of recent digital soil
mapping and modeling approaches.
Geoderma. 152: 195-207.
9.IUSS Working Group WRB. 2015. World
Reference Base for Soil Resources 2014,
update 2015 International soil classification
system for naming soils and creating
legends for soil maps. World Soil
Resources Reports No. 106. FAO, Rome.
10.Jafari A., Ayoubi, S., Khademi, H.,
Finke, P.A., and Toomanian, N. 2013.
Selection of a taxonomic level for soil
mapping using diversity and map purity
indices: a case study from an Iranian arid
region. Geomorphology. 201: 86-97.
11.Mallavan B.P., Minasny, B., and
McBratney, A.B. 2010. Homosoil, a
methodology for quantitative extrapolation
of soil information across the globe.
P 137-149. In: Digital soil mapping:
Bridging research, environmental application
and operation. J.L. Boettinger, D.W.
Howell, A.C. Moore, A.E. Hartemink,
and S. Kienast-Brown (eds). Springer,
Berlin.
12.Malone B.P., Jha, S.K., Minasny, B.,
and McBratney, A.B. 2016. Comparing
regression-based digital soil mapping
and multiple-point geostatistics for the
spatial extrapolation of soil data.
Geoderma. 262: 243-253.
13.McBratney, A.B., Mendonça Santos,
M.L., and Minasny, B. 2003. On digital
soil mapping. Geoderma. 117: 3-52.
14.Minasny, B., and McBratney, A.B. 2010.
Methodologies for global soilmapping.
P 429-436. In: Digital Soil Mapping:
Bridging Research, Environmental
Application and Operation. J.L. Boettinger,
D.W. Howell, A.C. More, A.E. Hartemink
and S. Kienast-Brown. Springer, London.
15.Mosleh, Z., Salehi, M.H., Jafari, A.,
Esfandiarpoor Borujeni, I., and
Mehnatkesh, A. 2016. The effectiveness
of digital soil mapping to predict soil
properties over low-relief areas.
Environ. Monitor. Assess. 188: 1-13.
16.Mosleh, Z., Salehi, M.H., Jafari, A.,
Esfandiarpoor Borujeni, I., and
Mehnatkesh, A. 2017. Identifying
sources of soil classes variations with
digital soil mapping approaches in the
Shahrekord plain, Iran. Environ. Earth.
Sci. 76: 748.
17.Salehi, M.H., Safaei, Z., Esfandiarpour
Borujeni, I., and Mohammadi, J. 2013.
Generalisation of continuous models to
estimate soil characteristics into similar
delineations of a detailed soil map. Soil.
Res. 51: 350-361.
18.Schoeneberger P.J., Wysocki, D.A.,
Benham, E.C., and Soil Survey Staff.
2012. Field book for describing and
sampling soils. 3nd Version. Natural
Resources Conservation Service. National
Soil Survey Center. Lincoln, NE. 300p.
19.Soil Survey Staff. 2014. Soil Taxonomy:
A basic systems of soil classification for
making and interpreting soil surveys.
Twelfth Edition. NRCS. USDA.
20.Vasques, G.M., Grunwald, S., and
Sickman, J.O. 2009. Modeling of soil
organic carbon fractions using visible/
near-infrared spectroscopy. Soil. Sci.
Soc. Am. J. 73: 176-184.