تأثیر روش مصرف، منابع مختلف کودهای آهن بر جذب برخی عناصر کم‌مصرف و پایداری غشا پلاسمایی گیاه سورگوم

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد ، گروه علوم خاک، دانشگاه زابل

2 دانشیار، گروه علوم خاک، دانشگاه زابل

3 استادیار ، گروه شیمی، دانشگاه زابل

4 مربی، گروه علوم خاک، دانشگاه زابل

چکیده

چکیده
سابقه و هدف: اهمیت کشاورزی، با افزایش جمعیت، بیش از هر زمان دیگری برای تمامی جوامع بشری مشخص گردیده است. عنصر آهن یکی از عناصر کم‌مصرف ضروری برای رشد گیاهان می‌باشد. در پژوهش حاضر سعی بر آن شده که علاوه‌بر بررسی غلظت عناصر کم‌مصرف در ریشه و اندام هوایی گیاه سورگوم، به پایداری غشای پلاسمایی آن در برابر ورود عناصر به درون آن و مقاومت گیاه در برابر تنش وارده به غشای درونی گیاه که این تنش میزان سطوح آهن کاربردی می‌باشد، توجه گردد. هدف از انجام این پژوهش مقایسه نحوه مصرف منابع آهن و تاثیر متقابل آن با غلظت و نوع کود کاربردی بر غلظت عناصر غذایی کم‌مصرف و پایداری غشای پلاسمایی گیاه سورگوم می‌باشد.
مواد و روش‌ها: به‌منظور بررسی نحوه مصرف منابع آهن بر خصوصیات گیاه Sorghum Bicolor (L.) Moench (سورگوم رقم اسپیدفید)، آزمایشی در شرایط گلخانه به‌صورت طرح فاکتوریل در قالب کاملاً تصادفی در سه تکرار اجرا شد. تیمارها شامل دو سطح آهن (مصرف خاکی: 270/0، 405/0 میلی‌گرم آهن در کیلوگرم خاک و محلول‌پاشی: 25/0 و 5/0 گرم آهن در لیتر همراه با شاهد در دو مرحله) از پنج منبع کودی (کلات آهن ، سولفات آهن، نانوآهن سبز (حاوی 9% آهن)، کلات آهن پلیمری، سولفات آهن پلیمری) بود.
یافته‌ها: تجزیه واریانس داده‌ها نشان داد که اثرات متقابل سه‌گانه بر اکثر صفات و اثرات متقابل دوگانه بر مقدار مس ریشه در سطح احتمال 5% معنی‌دار شده‌اند. در مصرف خاکی 270/0 میلی‌گرم در کیلوگرم کلات آهن، درصد پایداری غشا پلاسمایی ریشه (06/5 برابر) و در سطح 405/0 میلی‌گرم در کیلوگرم، غلظت روی ریشه (99/6 برابر) در تیمار نانوآهن سبز افزایش معنی‌داری نسبت به شاهد یافته‌اند. در محلول‌پاشی منابع آهن در سطح 25/0 گرم در لیتر میزان کلروفیل کل (95/75%)، درصد پایداری غشا پلاسمایی برگ (33/6 برابر) و غلظت آهن در اندام هوایی (99/1 برابر) به‌ترتیب در تیمارهای کلات آهن پلیمری، نانوآهن سبز و سولفات آهن پلیمری افزایش معنی‌دار و روی اندام هوایی (05/75%) در تیمار کلات آهن کاهش معنی‌داری نشان دادند. در سطح 5/0 گرم در لیتر آهن، غلظت منگنز اندام هوایی (67/30%) و ریشه (46/37%) به‌ترتیب در تیمارهای کلات آهن پلیمری و کلات آهن کاهش معنی‌دار و غلظت آهن ریشه گیاه (86/47%) در تیمار سولفات آهن پلیمری افزایش معنی‌داری در مقایسه با شاهد نشان دادند. بیشترین غلظت مس ریشه در محلول‌پاشی نانوآهن سبز مشاهده شد.نتیجه‌گیری: به طور کلی با توجه به نتایج، اثرات منابع آهن بر خصوصیات فیزیولوژیک گیاه سورگوم و درصد پایداری غشا پلاسمایی گیاه، مثبت ارزیابی شد و تاثیر مثبت محلول‌پاشی تمامی منابع آهن را بر صفات درصد پایداری غشا پلاسمایی ریشه و برگ، کلروفیل کل و غلظت آهن اندام هوایی و ریشه تایید می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Applying Methods, Concentration and Fe sources on the Amount of Some Microelements and the Stability of the Plasma Membrane of Sorghum Plant

نویسندگان [English]

  • Sabireh Golshahi 1
  • Ahmad Gholamalizdeh Ahangar 2
  • Noshin Mir 3
  • Maryam Ghorbani 4
1 Departemant of soil scinces Faculty of soil and water University of zabol Zabol/Iran
2
3 Departement of Chemistry Faculty of Sciences University of Zabol
4 Departement of soil sciences Faculty of soil and water University of Zabol Zabol/Iran
چکیده [English]

Abstract
Background and objectives: The importance of agriculture has been revealed for all human societies more than ever before as the population grows. Ferrum element is one of the vital elements for plant growth and its presence is essential for plant metabolism and physiological processes of the plant. In the present study, we tried to study the stability of plasma membrane against the entry of the elements into it and the resistance of the plant to the stresses on the inner membrane of the plant, which is the amount of applied Fe levels in addition to studying the concentration of microelements in the root and shoot of the plant. The purpose of this study is to compare Fe resources intake and its interaction with the concentration and type of applied fertilizer on the concentration of microelements and the stability of the plasma membrane of the sorghum plant.
Materials and methods: A greenhouse experiment was conducted as a factorial design in a completely randomized design with three replications in the educational greenhouse of Zabol University in order to studying the use of Ferrum sources on the characteristics of Sorghum plant (Sorghum Bicolor (L.) Moench. Var. Speed feed). The treatments consisted of two Ferrum levels (soil application: 0.270, 0.405 mg per kg of soil and spraying: 0.25 and 0.5 g of Fe per liter, along with control) from five sources of fertilizer (Iron chelate, ferrous sulphate, Green nano Fe (include 9% Fe), Polymeric Iron chelate, Polymeric ferrous sulphate).
Results: The results of analysis of variance of data show that the triple interaction of all traits (except for the Cu of shoot that had no significant difference) and the dual interaction effects of Cu in the root of the plant have been statistically significant at the 5% probability level. The percentage of PMSI of the root (5.06 times) in the soil application of 0.270 mg.kg-1 Iron chelate and the concentration of Zn of the root (6.99 times) at the level of 0.405 mg.kg-1 in Green nano Fe (include 9% Fe) treatment were significantly higher than control. The total chlorophyll content (75.95%), the percentage of leaf PMSI (6.33 times), and Fe concentration in the shoot (1.99 times) had significant increase in the Polymeric Iron chelate, Green nano Fe and Polymeric ferrous sulphate respectively and the concentration of Zn in the shoots showed significant decrease (75.05%) in Iron chelate treatment in the spraying of iron sources at a level of 0.25 g.L-1. The concentration of Mn was significantly decreased in the shoot (30.67%) and in the root (37.46%) in Polymeric Iron chelate and Iron chelate respectively and the concentration of Fe in the root (47.86%) showed significant increase in polymeric ferrous sulfate treatment compared to control at the level of 0.5 g.L-1. According to the results, the highest concentrations of Cu in the root were observed in the green nano spray application.
Conclusion: In general, according to the results, the effects of Fe a sources on the physiological characteristics of sorghum and plant PMSI were evaluated positive and confirms the positive effect of the spraying of all Fe sources on the traits of PMSI root and leaf, total chlorophyll and Fe concentration in the shoot and root.

کلیدواژه‌ها [English]

  • Iron chelate
  • Polymeric ferrous sulfate
  • Sorghum
  • Spraying
 1.Akbari, R.H., Bayramzadeh, V., Davoodi, M.H., Tohidloo, Gh., Ghadiri, M., Haghverdi, K., and Akbari, H. 2013. Effects of iron nanoparticles on seed germination characteristics of sots pine (pinus sylvestris) in the soil and aqueous medium. Natural Ecosystems of Iran.3: 2. 51-58. (In Persian)
2.Al-Kanh, F.R., and Abdullah, A.N. 2008. Effect of inorganic chelated iron Fertilizers on growth and yield Components of corn (Zea Mays L.). Journal of Agriculture and Environmental Sciences. Alexandria University, Egypt. 7: 3. 195-206.
3.Amanullah, M.M., Archana, J., Manoharan, S., and Subramanian, K.S. 2012. Influence of iron and AM inoculation on metabolically active iron, chlorophyll content and yield of hybrid maize in calcareous soil. J. Agron. 11: 1. 27-30.
4.Armin, M., Akbari, S., and Mashhadi, S. 2014. Effect of time and concentration of nano-Fe foliar application on yield and yield components of wheat. Inter. J. Biosci. 4: 9. 69-75.
5.Arnon, D.I. 1949. Copper Enzymes in Isolated Chloroplast, Polyphenol Oxidase in Beta vulgaris. J. Plant Physiol.24: 1-75.
6.Blume, A., and Ebercon, A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science. 27: 43-47.
7.Borowski, E., and Michalek, S. 2011. The effect of foliar fertilization of French bean with iron salts and urea on some physiological processes in plants relative to iron uptake and translocation in leaves. Acta scientiarum Polonorum Hortorum Cultus. 10: 2. 183-193.
8.Bouyoucos, C.J. 1962. Hydrometer method improved for making particle size analysis of soil. Agron. J. 54: 464-465.
9.Broschat, T.K., and Moore, K.K. 2004. Phytotoxicity of several iron fertilizers and their effects on Fe, Mn, Zn, Cu
and P content of African Marigolds and Zonal Geraniums. Horticultural Science. 39: 3. 595-598.
10.Chen, H.H., Shen, Z.Y., and Li, P.H. 1982. Adaptability of crop plants to high temperature stress. Crop Science. 22: 719-725.
11.Cottenie, A. 1980. Soil and plant testing as a basis of fertilizer recommendation. FAO Soils Bulletin. 38: 70-73.
12.Crowley, D.E., Wang, Y.C., Reid, C.P.P., and Szaniszlo, P.J. 1991. Mechanisms of iron acquisition from siderophores by microorganisms and plants. P 213-232, In: Chen, Y., and
Y. Hadar. (eds.), Iron Nutrition and Interactions in Plants. Kluwer Academic Publishers, Dordrecht, the Netherlands.
13.Delfani, M., Baradarn Firouzabadi,M., Farrokhi, N., and Makarian,H. 2014. Some Physiological Responses of Black- Eyed Pea to Iron and Magnesium Nanofertilizers. Communications in Soil Science and Plant Analysis. 45: 4. 530-540. 
14.El-Fouly, M.M., Mobarak, Z.M., and Salama, Z.A. 2011. Micronutrients (Fe, Mn, Zn) foliar spray for increasing salinity tolerance in wheat Triticum aestivum L. Afric. J. Plant Sci.5: 314-322.
15.Erdal, E., Kepenek, K., and Kizilgoz, I. 2004. Effect of Foliar Iron Applications at Different Growth Stages on Iron and Some Nutrient Concentrations in Strawberry Cultivars. Turk J. Agric. For. 28: 421-427.
16.Feil, B., Moser, S.B., Jampatong, S., and Stamp, P. 2005. Mineral composition of the grains of tropical maize varieties as affected by preanthesis drought and rate of nitrogen fertilization. Crop Science. 45: 516-523.
17.Fox, T.C., and Guerinot, M.L. 1998. Molecular biology of cation transport in plants. Annual Review of Plant Physiology and Plant Molecular Biology. 49: 669-696.
18.Fox, T.C., Shaff, J.E., Grusak, M.A., Norvell, W.A., Chen, Y., Chaney, R.L., and Kochian, L.V. 1996. Direct measurement of 59Fe labeled Fe2+ influx in roots of pea using a chelator buffer system to control free Fe in solution. Plant Physiology. 111: 93-100.
19.Ghafari, H., and Razmjoo, J. 2013. Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of Wheat. Inter. J. Agron. Plant Prod.4: 11. 2997-3003.
20.Ghafariyan, M.H., Malakouti, M.J., Dadpour, M.R., Stroeve, P., and Mahmoudi, M. 2013. Effects of Magnetite Nanoparticles on Soybean Chlorophyll. Environmental Science and Technology. 47: 10645-10652.
21.Ghasemi-Fasaei, R., Ronaghi, A., Maftoun, M., Karimian, N., and Soltanpour, P.N. 2003. Influence of FeEDDHA on iron-manganese interaction in soybean genotypes in calcareous soil. J. Plant Nutr. 26: 1815-1823.
22.Godsey, R.J., and Johnson, B. 2001. Seed treatment, seeding rate, and cultivar effects on iron deficiency chlorosis of soybean. J. Plant Nutr.
4: 8. 1255-1268.
23.Golshahi, S., Ahangar, A.Gh., Mir, N., and Ghorbani, M. 2017. The effect of foliar application of iron sources on growth parameters, iron concentration and activity of some enzymes of sorghum. J. Water Soil. 31: 5. 1467-1480. (In Persian)
24.Golshahi, S., Ahangar, A.Gh., Mir, N., and Ghorbani, M. 2018. A comparison of the use of different sources of nanoscale iron particles on the concentration of micronutrients and plasma membrane stability in sorghum. J. Soil Sci. Plant Nutr. 18: 1. 236-252.
25.Grillet, L., Mari, S., and Schmidt, W. 2014. Iron in seeds loading pathways and subcellular localization. Frontiers in Plant Science. 4: 535-547.
26.Guerfel, M., Baccouri, O., Boujnah, D., Chaibi, W., and Zarrouk, M. 2009. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae, 119: 257-263.
27.Helmke, P.A., and Sparks, D.L. 1996. Lithium, sodium, potassium, cesium, and rubidium. P. 551-574, In: D.L. Sparks, (ed.), Methods of soil analysis. Part 3. Chemical methods and processes. Madison: Soil Science Society of America, Madison, WI.
28.Hu, J., Guo, H., Li, J., Gan, Q., Wang, Y., and Xing, B. 2017. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environmental Pollution. 221: 199-208.
29.Inze, D., and Montagu, M.V. 1995. Oxidative stress in plants. Current Opinion in Biotechnology. 6: 153-158.
30.Jokar, L., Ronaghi, A., Karimian, N., and Ghasemi-Fasaei, R. 2015. Effects of different Fe levels from Fe-nano-chelate and Fe-EDDHA sources on growth and some nutrients concentrations in cowpea in a calcareous soil. J. Sci. Technol.  Greenhouse Cul. 6: 2. 9-19. (In Persian)
31.Kocheva, K., Lambrev, P., Georgiev, G., Goltsev, V., and Karabaliev, M. 2004. Evaluation of chlorophyll flouorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioeletrochemis. 63: 121-124.
32.Korcak, R.F. 1987. Iron Deficiency Chlorosis. Horticultural Reviews.9: 133-186.
33.Ksouri, R., Debez, A., Mahmoudi, H., Ouerghi, Z., Gharsalli, M., and Lachaa, M. 2007. Genotypic variability within Tunisian grapevine varieties (Vitis vinifera L.) facing bicarbonate-induced iron deficiency. Plant Physiology and  Biochemistry. 45: 315-322.
34.Levitt, J. 1980. Responses of plants to environmental stress: Water, Radiation, Salt and Other Stresses, Vol. II, Academic Press, NewYork, Pp: 3-211.
35.Lindsay, W.L., and Norvell, W.A. 1978. Development of DTPA Soil test for Zinc, Iron, Mangnese and Copper. Soil Sci. Soc. Amer. J. 42: 421-428.
36.Lucena, J.J. 2006. Synthetic iron chelates to correct iron deficiency in plants. P 103-128, In: L.L. Barton and
J. Abadía (eds.), Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht.
37.Majidi Heravan, E. 1994. Resistant physiological mechanism to environmental limited. In: Proceeding of the 3rd crop production science. Iranian Crop Science Congress. (In Persian)
38.Martineau, J.R., Specht, J.E. Williams, J.H., and Sullivan, C.Y. 1979. Temprature tolerance in soyabeans. I. Evaluation of a technique for assessing cellular memberane thermostability. Crop Science. 19: 75-78.
39.Masonic, A., Evacoli, A., and Mavoti, M. 1996. Spectral of leaves deficient in iron sulphur, magnesium and magnese. Agron. J. 88:6.937-943.
40.Mikkelsen, R.L. 1994. Using hydrophilic polymers to control nutrient release. Fertilizer Research. 38: 53-59.
41.Mikkelsen, R.L. 1995. Using hydrophilic polymers to improve uptake of manganese fertilizers by soybeans. Fertilizer Research. 41: 87-92.
42.Mortvedt, J.J., Mikkelsen, R.L., and Behel, A.D.Jr. 1992. Grain sorghum response to granular formulations of iron sources and hydrophilic polymers. J. Plant Nutr. 15: 1913-1926.
43.Motsara, M.R., and Roy, R.N. 2008. Guide to laboratory establishment for plant nutrient analysis. Food and Agriculture Organization of the United Nations. Rome, Italy, 219p.
44.Nadi, E., Aynehband, A., and Mojaddam, M. 2013. Effect of nano-iron chelate fertilizer on grain yield, protein percent and chlorophyll content of Faba Bean (Vicia faba L.). Inter. J. Biosci.3: 9. 267-272.
45.Olsen, S.R., Cole, C.V., Watanabe, F.S., and Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939, US Gov. Printing Office, Washington, DC.
46.Page, A.L., Miller, R.H., and Keeney, D.R. 1982. Methods of soil analysis. Part2. 2nd ed. American Society of Agronomy and Soil Science Society of America. Madison, WI.
47.Reed, D.W.M., Lyons, Jr.C.G., and McEachern, G.R. 1988. Field evaluation of inorganic and chelated iron fertilizers as foliar sprays and soil application.J. Plant Nutr. 11: 6-11. 1369-1378.
48.Ren, H., Liu, L., Liu, C., He, S., Huang, J., Li, J., and Gu, N. 2011. Physiological investigation of magnetic iron oxide nanoparticles towards Chinese mung bean. J. Biomed. Nanotechnol. 7: 677-684.
49.Rezaeei, M., Daneshvar, M., and Shirani, A.H. 2014. Effect of iron nano chelated fertilizers foliar application on three wheat cultivars in Khorramabad climatic conditions. Sci. J. Crop Sci.
3: 2. 9-16.
50.Rhoades, J.D. 1982. Soluble salts.P 167-179, In: A.L. Page, (ed.), Methods of soil analysis. Part 2: Chemical and microbiological properties. Monograph Number 9 (Second Edition). American Society of Agronomy, Madison, WI.
51.Rible, J.M., and Quick, J. 1960. Method S-3.1. In: Water, soil and plant tissue, tentative methods of analysis for diagnostic purposes. Davis, University of California Agricultural Experiment Service. Mimeographed Report.
52.Roomizadeh, S., and Karimian, N. 1996. Manganese-iron relationship in soybean grown in calcareous soils. J. Plant Nutr. 19: 397-406.
53.Roosta, H.R., Jalali, M., and Vakili Shahrbabaki, S.M.A. 2015. Effect of Nano Fe-Chelate, Fe-EDDHA and FeSO4 on Vegetative Growth, Physiological Parameters and Some Nutrient Elements Concentrations of Four Varieties of Lettuce (Lactuca sativa L.) In NFT System. J. Plant Nutr. 38: 14. 2176-2184.
54.Rui, M., Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., Zhao, Q., Fan, X., Zhang, Z., Hou, T., and Zhu, S. 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers Plant Science. 7: 815-825.
55.Saadalla, M.M., Shanahan, J.F., and Quick, J.S. 1990. Heat tolerance in winter wheat. Crop Science. 30: 1243-1247.
56.Sairam, R.K., and Srivastava, G.C. 2001. Water stress tolerance of wheat Triticum astivum L.: Variation in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotype. J. Agron. Crop Sci. 186: 63-70.
57.Steiner, A.A., and Winden, H.V.1970. Recipe for Ferric Salts of Ethylenediaminetetraacetic Acid. Plant Physiology. 46: 862-863.
58.Sullivan, C.Y. 1972. Mechanism of heat and drought resistance in grain sorghum and method of measurement. P 247-246, In: N.G.P. Rao, and L.R. House (eds.), Sorghum in seventies. Oxford and IBH publishing company, New Delhi.
59.Sullivan, C.Y., and Ross, W.M. 1979. Selecting for drought and heat resistance in grain sorghum. P 263-281, In: H., Mussel, and R.C. Staples (eds.), Stress physiology in crop plants. John Wiely and Sons, NewYork.
60.U.S. Salinity Laboratory Staff. 1954. Alkaline-earth carbonates by gravimetric loss of carbon dioxide. P. 105-106,
In: L.A. Richards, (ed.), Diagnosis and improvement of saline and alkali soils. USDA Agric. Handbook. 60. U.S. Government Printing Office, Washington, D.C.
61.U.S. Salinity Laboratory Staff. 1954.pH reading of saturated soil paste.P 102-103, In: L.A. Richards, (ed.), Diagnosis and improvement of saline and alkali soils. USDA Agricultural Handbook 60. U.S. Government Printing Office, Washington, D.C.
62.Walkley, A., and Black, I.A. 1934. Chromic acid titration for determination of soil organic matter. Soil Science.63: 251.
63.Wang, Y., Hu, J., Dai, Z., Li, J., and Huang, J. 2016. In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Plant Physiology and Biochemistry. 108: 353-360.
64.Welch, R.M., Allaway, W.H., House, W.A., and Kubota, J. 1991. Geographic distribution of trace element problems.
P 31-57, In: J.J. Mortvedt, F.R. Cox, L.M. Shuman, and R.M. Welch (eds.), Micronutrients in Agriculture. 2nd ed, Soil Science Society American Inc. Madison, WI.
65.Zeidan, M.S., Mohamed, M.F., and Hamouda, H.A. 2010. Effect of foliar fertilization of Fe, Mn and Zn on wheat yield and quality in low sandy soils fertility. World J. Agric. Sci. 6: 6. 696-699.
66.Zhang, Y., Hu, C.X., Tan, Q.L., Zheng, C.S., Gui, H.P., Zeng, W.N., Sun, X.C., and Zhao, X.H. 2014. Plant nutrition status, yield and quality of satsuma mandarin (Citrus unshiu Marc.) under soil application of Fe-EDDHA and combination with zinc and manganese in calcareous soil. Scientia Horticulturae. 174: 46-53