تابع مفصل و کاربرد آن در برآورد تغییرات مکانی شن و جرم مخصوص ظاهری خاک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد، گروه علوم خاک، دانشگاه شهید باهنر کرمان

2 دانشیار، گروه علوم خاک، دانشگاه شهید باهنر کرمان

3 استادیار، گروه علوم خاک، دانشگاه شهید باهنر کرمان

4 دانشیار ، گروه علوم خاک، دانشگاه شهید باهنر کرمان

چکیده

چکیده
سابقه و هدف: ویژگی‌های خاک دارای تغییرات مکانی و زمانی در مقیاس‌های کوچک و بزرگ می‌باشند. مطالعه این تغییرات، در سطح وسیع بسیار وقت‌گیر و هزینه‌بر است. به منظور تعیین سریع و قابل اعتماد ویژگی‌های خاک، تکنیک‌های درون‌یابی مختلفی توسعه و به‌کار گرفته شده است. از تکنیک‌های درون‌یابی که به طور گسترده در علوم مختلف به‌کار رفته است، می‌توان به انواع کریجینگ اشاره کرد. تابع مفصل، یکی از تکنیک‌های درون‌یابی جدیدی است که امروزه در علومی مانند هیدرولوژی کاربرد وسیعی پیدا کرده است. در پژوهش حاضر سعی شده است تغییرات مکانی برخی از ویژگی‌های فیزیکی خاک با استفاده از تابع مفصل مورد ارزیابی قرار گیرد و نتایج حاصل از آن با تکنیک‌های زمین‌آماری مختلف مقایسه گردد.

مواد و روش‌ها: به منظور اجرای پژوهش، نمونه‌برداری به روش شبکه‌بندی منظم، از منطقه‌ای به وسعت 484 هکتار در 10 کیلومتری غرب شهرستان بافت استان کرمان صورت گرفت و در نهایت، 121 نمونه از لایه سطحی خاک جمع‌آوری شد. پس از هوا خشک نمودن نمونه‌ها جرم مخصوص ظاهری با استفاده از کلوخه تعیین گردید، سپس با عبور دادن نمونه‌های خاک از الک 2 میلی-متری، درصد شن اندازه‌گیری شد. برای درون یابی از چهار تابع مفصل ارشمیدسی شامل؛ توابع کلایتون، فرانک، گامبل و جو و تکنیک‌های زمین‌آماری شامل کریجینگ ساده، کریجینگ معمولی، کریجینگ شاخص و کریجینگ منفصل یا گسسته و روش وزن‌دهی عکس فاصله (IDW) استفاده شد. تحلیل نتایج با استفاده از معیارهای میانگین ریشه دوم مربعات استاندارد (RMSE)، ضریب تبیین (R2)، میانگین خطای مطلق(MAE) و میانگین خطای انحراف (MBE) صورت گرفت.

یافته‌ها: براساس توصیف آماری، توزیع متغیر جرم مخصوص ظاهری، نرمال و متغیر درصد شن، غیرنرمال تشخیص داده شد. به منظور برازش تابع مفصل بر داده‌ها، ابتدا تابع توزیع متغیرهای مورد مطالعه تعیین گردید. نتایج نشان داد متغیر شن از تابع توزیع Frechet (3P) و متغیر جرم مخصوص ظاهری از تابع Wakeby پیروی کردند. براساس ضریب همبستگی پیرسون، همبستگی بین جفت نقاط در فاصله کمتر از 2000 متر مشخص شد و فاصله بیش از 2000 متر به عنوان فاصله مستقل شناخته شد. مقایسه روش تابع مفصل و تکنیک‌های زمین‌آماری براساس ضریب تبیین(R2) نشان داد مقدار این ضریب برای تابع مفصل برای متغیر شن 6 درصد و برای جرم مخصوص ظاهری 8 درصد بیشتر از تکنیک‌های مرسوم زمین‌آماری به دست آمد. همچنین مقادیر خطای حاصل از پیش‌بینی توسط تابع مفصل کمتر محاسبه شد که نشان از برتری نسبی عملکرد تابع مفصل در تخمین پارامترهای فیزیکی خاک دارد.

نتیجه‌گیری: نتایج این پژوهش نشان داد که توابع مفصل نتوانسته با دقت خیلی بالایی برآورد را انجام دهد، اگرچه تابع مفصل میانه نسیت به سایر تکنیک‌های زمین‌آماری، عملکرد بهتری در برآورد ویژگی‌های فیزیکی خاک دارد. از مهمترین دلایل این برتری می‌توان به توانایی برازش تابع توزیع حاشیه‌ای بر داده‌ها در تابع مفصل اشاره کرد که در تکنیک‌های زمین‌آماری امکان برازش تابع توزیع حاشیه‌ای بر داده ها ممکن نیست. از دلایل دیگر می‌توان به توانایی بیان همبستگی بین داده‌ها در فواصل مختلف و عدم حساسیت تابع مفصل به داده‌های پرت نسبت به تکنیک‌های مرسوم زمین‌آماری را برشمرد. با توجه به ماهیت چولگی داده‌های خاک در طبیعت و همچنین ضرورت آنالیز و تفسیر دقیق‌تر داده‌های واقعی خاک بدون تغییر آن‌ها، تابع مفصل می‌تواند کاربرد وسیعی در تخمین ویژگی-های خاک داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Copula function and its application to estimate sand and bulk density of soil

نویسندگان [English]

  • Ehsan Ghojehpour 1
  • Vahid Reza Jalali 2
  • Azam Jafari 3
  • Majid Mahmoudabadi 4
1 Department of Soil Science, College of Agriculture, Shahid Bahonar University of Kerman
2 Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
3
4 Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Background and objectives: Spatial and temporal variations of soil characteristics occur in large and small scales. Study of these variations is very time-consuming and costly especially in large scales. In order to the fast and reliable determination of soil properties, various interpolation techniques have been developed and applied. The most widely used interpolation techniques in various sciences is the Kriging types. The copula function is one of the new interpolation techniques that are widely used in sciences such as hydrology. Thus, the aim of this study was to evaluate the spatial variations of some soil physical properties using copula function and to compare with geostatistics techniques.

Materials and methods: Sampling by regular networking was done in an area of 484 ha located in 10 km from the west of Baft city, Kerman province and finally, 121 surface soil samples were collected. After air drying, the apparent bulk density was determined using the Hunk, then the soil samples were passed through a 2 mm sieve to determine the percentage of sand. To interpolate, four functions of the Archimedean copula including the Clayton, Frank, Gumbel and Joe functions, and geostatistics techniques including simple, ordinary, universal and disjunctive Kriging and the Inverse Distance Weighting (IDW) method were used. The results were analyzed using Root Mean Square Error (RMSE), determination coefficient (R2), Mean Absolute Error (MAE), and Mean Bias Error (MBE).

Results: Based on the descriptive statistics, soil bulk density and soil sand followed a normal and skewed distribution, respectively. In order to fit the copula function, the distribution functions of the studied variables were firstly determined. The results showed that the sand and bulk density followed the Frechet (3P) and Wakeby distribution functions, respectively. Also, based on the Pearson correlation coefficient, the correlation between pairs of points was determined in distances less than 2000 m and distances more than 2000 m were known as an independent distance. The estimation efficiency based on the determination coefficient (R2) showed that value of determination coefficient for copula function for the sand variable, 6% and for bulk density 8%, more than conventional geostatistics techniques were obtained. Also, the estimation error of copula function was minimum that indicate good performance of copula function to estimate the spatial variation of soil physical properties.

Conclusion: The results of study showed that copula function, especially the median copula, have the better performance for estimation the studied soil properties. One of the most important reasons for this superiority is the ability to fit the marginal distribution function on the data in copula, while it is not possible in geostatistics techniques. Other reasons include the ability to express the correlation between the data at different intervals and the lack of sensitivity to outlier data in copula relative to conventional geostatistics techniques. Due to the skewness nature of soil data, as well as the need for more accurate analysis and interpretation of actual soil data, copula functions can be widely used to estimate of soil properties.

کلیدواژه‌ها [English]

  • Copula
  • interpolation techniques
  • prediction
1.Aas, K., Czado, C., Frigessi, A., and Bakken, H. 2009. Pair-copula constructions of multiple dependence. Insurance: Mathematics and economics. 44: 2. 182-198.
2.Ariff, N.M., Jemain, A.A., Ibrahim, K., and Wan Zin, W.Z. 2012. IDF relationships using bivariate copula for storm events in Peninsular Malaysia.J. Hydrol. 470-471: 158-171.
3.Banai, M. 1998. Soil Moisture and Temperature Regime Map of Iran. Soil and Water Research Institute, Ministry of Agriculture, Iran.  
4.Bárdossy, A. 2006. Copula-based geostatistical models for groundwater quality parameters. Water Resources Research. 42: 1-12.
5.Bárdossy, A., and Pegram, G. 2014. Infilling missing precipitation records – A comparison of a new copula-based method with other techniques. J. Hydrol. 519: 1162-1170.
6.Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J. 54: 5. 464-465.
7.Foroughifar, H., Jafarzadah, A.A., Torabi Gelsefidi, H., Aliasgharzadah N., Toomanian, N., and Davatgar, N. 2011, Spatial Variations of Surface Soil Physical and Chemical Properties on Different Land forms of Tabriz Plain, Water and Soil Science. 21: 3. 1-21.(In Persian)
8.Ganjalikhani, M., Zounemat Kermani, M., Rezapur, M., and Rahnama, M. 2016. Evaluation of Copula Performance in Groundwater Quality Zoning Case Study: Kerman and Ravar region. Iran. J. Soil Water Res. 47: 3. 551-560. (In Persian)
9.Gräler, B., and Pebesma, E. 2011. The pair-copula construction for spatial data:
a new approach to model spatial dependency. Procedia Environmental Sciences. 7: 1. 206-211.
10.Grossman, R.B., and Reinsch, T.G. 2002. Bulk density and linear extensibility. P 202-228. In: J.H. Dane and G.C. Topp (eds.) Methods of Soil Analysis, Part 4. Physical Methods. Soil Sci. Am. Book Series No. 5. ASA and SSSA, Madison, WI.
11.Hao, Z., and Singh, V.P. 2013. Modeling multisite streamflow dependence with maximum entropy copula. Water Resources Research.49: 10. 7139-7143.
12.Hofert, M., Kojadinovic, I., Maechler, M., Yan, J., and Nešlehová, G. 2018. Copula: Multivariate Dependence with Copulas. R package (Version 0.999-19). URL: http://CRAN.R-project.org/ package= copula (19.12.2018).
13.Jordan, S., Jannoura, G.R., Jordan, G., Buerkert, A., and Joergensen, R.G. 2018. Spatial variability of soil properties in the floodplain of a river oasis in the Mongolian Altay Mountains. Geoderma. 330: 99-106.
14.Khosravi, Y., and Abbasi, E. 2016. Spatial Analysis of Environmental Data Using Geostatistics, 280p. (In Persian)
15.Kinyangi, J. 2007. Soil health and soil quality: a review. Ithaca, USA, Cornel University, Draft publication. Available on: http://www.cornell.edu.org; Accessed on: www.worldaginfo.org. Accessed 15 Feb 2010
16.Kong, X.M., Huang, G.H., Fan, Y.R., and Li, Y.P. 2014. Maximum entropy -Gumbel-Hougaard copula method for simulation of monthly streamflow in Xiangxi River, China. Stochastic Environ. Res. Risk Assessment. 14: 2. 1-14.
17.Li, J. 2010. Application of copulas as a new geostatistical tool. Doctoral thesis, University of Stuttgart, Faculty of Civil and Environmental Engineering. PhD Thesis.
18.Lovland, P., and Webb, J. 2003. Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil and Tillage Research.
70: 1. 1-18.
19.Moazami, S., Golian, S., Kavianpour, M.R., and Hong, Y. 2014. Uncertainty analysis of bias from satellite rainfall estimates using copula method. Atmospheric Research. 137: 145-166.
20.Nelsen, R.B. 2007. An introduction to copulas. Springer Series in Statistics.2nd Edition. Springer. 272p.
21.Oliver, M.A., and Webster, R. 2015. Basic steps in geostatistical: The Variogram and Kriging. Springer. 100p.
22.Salvadori, G., and De Michele, C. 2014. Multivariate real-time assessment of droughts via copula-based multi-site Hazard Trajectories and Fans. J. Hydrol. 526: 101-115.
23.Schmidt, T. 2007. Coping with copulas. In Copulas - From Theory to Application in Finance, J. Rank (ed.),
3-34, Risk Books, London.
24.Sokouti Oskooei, R., Mahdian, M., Mahmoodi, S., and Masihabadi, M. 2010. Spatial variability of some
soil characteristics in Uromieh Plain, watershed engineering and management. 2: 3. 161-169.
25.Wang. G., Gertner, G., Parysow, P., and Anderson, A.B. 2000. Spatial Prediction and uncertainty analysis of topographic factors for the revised universal soil loss equation (RUSLE), J. Soil Water Cons. 55: 3. 114-123.
26.Wilding, L.P. 1985. Spatial variability: its documentation accommodation and implication to soil surveys. P 166-194. In: D.R. Nielsen and J. Bouma (eds.) Soil Spatial Variability. Pudoc. The Netherlands.
27.Yemefack, M., Rossiter, D.G., and Yomgang, R.N. 2005. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma.125: 117-143.
28.Zheng, H., Wu, J., and Zhang, S. 2009. Study on the spatial variability of farmland soil nutrient based on the kriging interpolation. AICI, International conference on artificial intelligence and computational intelligence, November
7-8, Shanghai, China, 4: 550-555.