اثر زغال‌زیستی کاه‌گندم و نئوپان اشباع شده با آهن بر جذب آهن و رشد دو رقم سویا در یک خاک آهکی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد ،گروه علوم خاک ، ،دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشیار ، گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 دانشیار، گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 استادیار مؤسسه تحقیقات پنبه کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

چکیده

چکیده
سابقه و هدف: زغال زیستی یک محصول غنی از کربن است که از گرماکافت بقایای آلی کربن دار در شرایط عدم وجود اکسیژن یا اکسیژن محدود تولید می شود. کاربرد زغال زیستی به دلیل ویژگی‌های منحصر به فرد نظیر مقادیر کربن آلی، سطح ویژه و ظرفیت تبادل کاتیونی بالا موجب افزایش قدرت جذب و نگهداری آب و عناصر غذایی و در نتیجه موجب افزایش سطح حاصلخیزی خاک می شود. بنابراین، هدف از این پژوهش بررسی اثر زغال زیستی اشباع شده با کود آهن بر رشد و جذب آهن توسط سویا در یک خاک آهکی بود.
مواد و روش ها: خاک آهکی دارای کمبود آهن قابل استفاده (30-0 سانتی متری) از شرق استان گلستان تهیه شد و پس از هوا خشک شدن از یک الک 2 میلی متری عبور داده شد. دونوع زغال زیستی از کاه گندم و نئوپان در دمای 300 درجه سانتی گراد تهیه و با سولفات آهن Fe2SO4.7H2O اشباع سازی شد. آزمایشی گلدانی به صورت فاکتوریل در قالب طرح کاملا تصادفی در چهار تکرار انجام شد. فاکتورها شامل زغال های زیستی (زغال زیستی کاه گندم (WB) و زغال زیستی نئوپان (PB) با 5/2 درصد وزنی)، زغال های زیستی اشباع شده با آهن (زغال زیستی اشباع شده کاه گندم 5/2 درصد وزنی (Fe-IWB1) و 5 درصد وزنی (Fe-IWB2)، زغال زیستی نئوپان اشباع شده 5/2 درصد وزنی (Fe-IPB1) و 5 درصد وزنی (Fe-IPB2)، کود سکوسترین آهن (S) و تیمار شاهد (C) و دو رقم سویا (ویلیامز و سامان) بود. گلدان های کشت شده به مدت 12 هفته در حدود ظرفیت مزرعه به روش وزنی نگهداری شدند. سپس ارتفاع، عملکرد وزن تر و وزن خشک، غلظت و جذب آهن کل شاخساره و مقدار آهن فراهم خاک بعد از برداشت اندازه گیری شد.
یافته ها: مصرف زغال زیستی اشباع شده با آهن سبب افزایش فراهمی آهن در خاک گردید. همچنین تصاویر SEM نشان داد که آهن روی سطوح زغال های زیستی جذب سطحی یا انباشته شده است. ارتفاع، وزن تر و وزن خشک هر دو رقم سویا در هر دو سطح تیمارهای
زغال های زیستی اشباع شده با آهن از تیمار زغال های زیستی اشباع نشده و شاهد بطور معنی داری بیشتر بود (01/0P ≤ ) ولی با تیمار سکوسترین آهن تفاوت معناداری نداشت. همچنین غلظت و مقدار جذب آهن در شاخساره در هر دو رقم سویا با مصرف زغال های زیستی اشباع شده در مقایسه با خاک شاهد و زغال های زیستی اشباع نشده افزایش معنی دار داشت (01/0P ≤ ). پاسخ ارقام به زغال های زیستی اشباع شده با آهن نشان داد که وزن خشک و جذب آهن شاخساره رقم سامان در هر دو سطح زغال زیستی اشباع شده با آهن به-طور معنی دارای بیشتر از رقم ویلیامز بود.
نتیجه گیری: مصرف زغال زیستی اشباع شده با آهن در خاک آهکی دچار کلروز آهن باعث افزایش فراهمی آهن شد. بنابراین زغال زیستی اشباع شده با آهن علاوه بر بهبود خصوصیات فیزیکی، شیمیایی و بیولوژیکی خاک به خوبی می تواند همانند سکوسترین آهن کمبود آهن گیاه را برطرف سازد.
واژه های کلیدی: آهن، خاک، سویا ،زغال زیستی، اشباع سازی

کلیدواژه‌ها


عنوان مقاله [English]

Effect of iron impregnated wheat straw and particleboard biochar on the iron uptake and growth of two soybean cultivars in a calcareous soil

نویسندگان [English]

  • Jalal-e-din Khallizadeh 1
  • Esmael Dordipour 2
  • Mojtaba Baranimotlgh 3
  • Abdolreza Gharanjiki 4
1 M.Sc. Student, Soil Sci. Dept., Faculty of Water and Soil, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., Gorgan, Iran.
2 Member of scientific board
3 Member of scientific board
4 Scientific Staff Member, Cotton Research Institute, Areeo, Gorgan, Iran
چکیده [English]

Abstract
Background and Objectives: Biochar is a carbon-rich product which is produced using pyrolysis of carbon-containing organic residues under anaerobic or oxygen-limited conditions. Due to unique properties such as high organic carbon, specific surface area and cation exchange capacity, application of biochar leads to increase in adsorption and holding capacity of water and nutrients. This, in turn, results in improved soil fertility. The aim of this study was to investigate the effect of iron impregnated biochr on iron uptake and growth of soybean grown in calcareous soil.
Materials and Methods: An iron deficient calcareous soil (0-30 cm) was collected from east of Golestan province and after air drying, it was passed through a 2 mm sieve. Two types of biochar were produced from wheat straw and particleboard (at 300○C) and impregnated with iron sulfate (Fe2SO4.7H2O). A pot experiment was conducted as a factorial arrangement in a completely randomized design with four replications. Factors were biochars (wheat straw biochar (WB) and particleboard biochars (PB) with 2.5% w/w), iron impregnated biochars (Fe impregnated wheat straw biochar 2.5% w/w (Fe- IWB1) and 5% w/w (Fe-IWB2), 2.5% w/w (Fe-IPB1) and 5% w/w (Fe-IPB2) Fe impregnated particleboards, Fe- Sequestrene (S) and control (C), and two Soybean cultivars (Williams and Saman). The sown pots were maintained in field capacity by weighing method for 12 weeks. Then, height, fresh and dry weights, total iron concentration and uptake of shoot and soil available iron contents were determined after the harvest.
Results: The application of Fe impregnated biochar increased iron availability in the soil. Also, SEM images showed that iron was adsorbed or accumulated on biochars surfaces. Height, fresh and dry weights of both soybean cultivars in Fe impregnated biochars were significantly higher than those of bichars and control treatments (P ≤ 0.01), but there were no significant differences among them with treatment Fe- Sequestrene. Furthermore, with the application of Fe impregnated biochars, the iron concentration and uptake amount of shoots in both soybean cultivars increased significantly compared to control and non-impregnated biochars treatments (P <0.01). Cultivars responses to Fe impregnated biochars showed that shoot dry weight and iron uptake of the Saman variety were significantly higher than those of Williams variety in both levels of Fe impregnated biochars.
Conclusion: The application of Fe impregnated biochar in calcareous soils with iron chlorosis increased iron availability. Therefore, in addition to improving the physical, chemical and biological properties of soil, Fe impregnated biochars like Fe- Sequestrene can effectively remove the iron deficiency of the plant.

کلیدواژه‌ها [English]

  • Iron
  • Soil
  • Soybean
  • Biochar
  • Impregnation
1.Adejumo, S.A., Owolabi, M.O., and Odesola, I.F. 2016. Agro-physiologic effects of compost and biochar
produced at different temperatures on growth, photosynthetic pigment and micronutrients uptake of maize crop. Afric. J. Agric. Res. 11: 661-673.
2.Alloway, B.J., Graham, R.D., and Stacey, S.P. 2008. Micronutrient deficiencies in Australian field crops. P 63-92,
In: B.J. Alloway (ed.), Micronutrient deficiencies in global crop production. Springer, Netherlands.
3.Atkinson, C.J., Fitzgerald, J.D., and Hipps, N.A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and soil. 337: 1-18.
4.Barrow, C.J. 2012. Biochar: potential for countering land degradation and for improving agriculture. Applied Geography. 34: 21-28.
5.Biederman, L.A., and Harpole, W.S. 2013. Biochar and its effects on plant productivity and nutrient cycling: a
meta-analysis. Global change biology bioenergy. 5: 202-214.
6.Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analyses of soils. Agron. J. 54: 464-465.
7.Çelik, H., and Katkat, A.V. 2007. Some parameters in relation to iron nutrition status of peach orchards. J. Biol. Environ. Sci. 1: 111-115.
8.Celik, I., Ortas, I., and Kilic, S. 2004. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil and Tillage Research. 78: 59-67.
9.Chan, K.Y., Zwieten, L.V., Meszarost,L., Downie, A., and Joseph, S.2008. Using poultry litter biochars as soil amendments. Austr. J. Soil Res.46: 3. 437-444.
10.Chand, M., Randhawa, N.S., and Bhumbla, D.R. 1981. Effectiveness of zinc chelates in zinc nutrition of greenhouse rice crop in a saline-sodic soil. Plant and soil. 59: 217-225.
11.Chatterjee, C., Gopal, R., and Dube, B.K. 2006. Impact of iron stress on biomass, yield, metabolism and quality of potato (Solanum tuberosum L.). Scientia Horticulturae. 108: 1-6.
12.Cheng, Y., Cai, Z.C., Chang, S.X., Wang, J., and Zhang, J.B. 2012. Wheat straw and its biochar have contrasting effects on inorganic N retention and N 2 O production in a cultivated Black Chernozem. Biology and Fertility of Soils. 48: 941-946.
13.Cifuentes, F.R., and Lindemann, W.C. 1993. Organic matter stimulation of elemental sulfur oxidation in a calcareous soil. Soil Sci. Soc. Amer. J. 57: 727-731.
14.Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E. and Tack, F.M. 2009. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Science of the total environment. 407: 3972-3985.
15.Fagbenro, J.A., Oshunsanya, S.O., and Onawumi, O.A. 2013. Effect of Saw Dust Biochar and NPK 15: 15: 15 Inorganic Fertilizer on Moringa oleifera Seedlings Grown in an Oxisol. Agrosearch. 13: 57-68.
16.Farhangi-Abriz, S., and Torabian, S. 2018. Effect of biochar on growth and ion contents of bean plant under saline condition. Environmental Science and Pollution Research. 25: 11556-11564.
17.Gaskin, J.W., Steiner, C., Harris,K., Das, K.C., and Bibens, B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE.51: 2061-2069.
18.Glaser, B., Lehmann, J., and Zech,W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and Fertility of Soils. 35: 219-230.
19.Graber, E.R., Harel, Y.M., Kolton, M., Cytryn, E., Silber, A., David, D.R., Tsechansky, L., Borenshtein, M., and Elad, Y. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil. 337: 481-496.
20.Gunarathne, V., Mayakaduwa, S., and Vithanage, M. 2017. Biochar’s Influence as a Soil Amendment for Essential Plant Nutrient Uptake.
P 47-67, In: M. Naeem, etal (eds), Essential Plant Nutrients. Springer, International Publishing. Gewerbestrasse 11, 6330 Cham, Switzerland.
21.Havlin, J.L., Beaton, J.D., Tisdale, S.L., and Nelson, W.L. 2005. Soil fertility and fertilizers. 7th ed. Pearson/Prentice Hall. Upper Saddle River, NJ. 515p.
22.Inal, A., Gunes, A., Sahin, O.Z.G.E., Taskin, M.B., and Kaya, E.C. 2015. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use and Management. 31: 106-113.
23.Jiang, T.Y., Jiang, J., Xu, R.K., and Li, Z. 2012. Adsorption of Pb (II) on variable charge soils amended with rice-straw derived biochar. Chemosphere. 89: 249-256.
24.Jones, J.B.Jr., and Case, V.W. 1990. Sampling, handling, and analyzing plant tissue samples. P 389-427, In: R.L. Westerman (ed.), Soil testing and plant analysis. 3rd ed. SSSA, Madison, WI, USA.
25.Joseph, S., Anawar, H.M., Storer, P., Blackwell, P., Chee, C.H.I.A., Yun, L.I.N., Munroe, P., Donne, S., Horvat, J., Jianli, W.A.N.G., and Solaiman, Z.M. 2015. Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere. 25: 749-760.
26.Joseph, S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C.H., Hook,J., Van Zwieten, L., Kimber, S., Cowie, A., Singh, B.P. and Lehmann, J.2010. An investigation into the reactions of biochar in soil. Soil Research.48: 501-515.
27.Kim, H.S., Kim, K.R., Yang, J.E., Ok, Y.S., Owens, G., Nehls, T., Wessolek, G., and Kim, K.H. 2016. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere. 142: 153-159.
28.Lahori, A.H., Zhang, Z., Guo, Z., Li, R., Mahar, A., Awasthi, M.K., Wang, P., Shen, F., Kumbhar, F., Sial, T.A., and Zhao, J. 2017. Beneficial effects of tobacco biochar combined with mineral additives on (im) mobilization and (bio) availability of Pb, Cd, Cu and Zn from Pb/Zn smelter contaminated soils. Ecotoxicology and environmental safety. 145: 528-538.
29.Lakitan, B., Alberto, A., Lindiana,L., Kartika, K., Herlinda, S., and Kurnianingsih, A. 2018. The benefits of biochar on rice growth and yield in tropical riparian wetland, South Sumatera, Indonesia. Chiang Mai Univ. J. Natur. Sci. 17: 111-126.
30.Lee, S.S., Shah, H.S., Awad, Y.M., Kumar, S., and Ok, Y.S. 2015. Synergy effects of biochar and polyacrylamide on plants growth and soil erosion control. Environmental Earth Sciences. 74: 2463-2473.
31.Lehmann, J. 2009. Biochar for environmental management. Science and technology, Earthscan, London, & Sterling, VA. UK. Pp: 1-12.
32.Lehmann, J., and Joseph, S. eds. 2015. Biochar for environmental management: science, technology and  implementation. Routledge.
33.Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Amer. J. 42: 421-428.
34.Loeppert, R.H., and Suarez, D.L. 1996. Carbonate and gypsum. P 437-474. In: D.L. Sparks, et al. (eds.), Methods of Soil Analysis. Part 3. 3rd ed. Part 3. Chemical methods. SSSA and ASA, Madison ,WI, USA.
35.Major, J., Rondon, M., Molina, D.,Riha, S.J., and Lehmann, J. 2010.Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil. 333: 117-128.
36.Malakouti M.J., Karimian N.A., and Keshavarz P. 2006. Diagnosis and recommendation integrated system for balanced fertilization, Tarbiatmodarres university press, Tehran, Iran. 718p.(In Persian)
37.Marschner, H. 2012. Marschner's mineral nutrition of higher plants. 3rd ed. Academic press is an imprint of Elsevier, Amesterdam, Boston, London, New York. 651p.
38.Méndez, A., Gómez, A., Paz-Ferreiro,J., and Gascó, G. 2012. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere.89: 1354-1359.
39.Mengel, K., and Kirkby, E.A. 2001. Principles of plant nutrition. 5th ed. Kluwer Academic Publishers, Dordrecht, Netherlands. 849p.
40.Mukherjee, A., Lal, R., and Zimmerman, A.R. 2014. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of the Total Environment. 487: 26-36.
41.Nelson, D.W., and Sommers, L.E. 1996. Total carbon, organic carbon and organic matter. P 961-1010, In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner. (eds.), Methods of Soil Analysis. Part 3. Chemical methods. SSSA and ASA, Madison ,WI, USA.
42.Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W.,and Niandou, M.A. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science. 174: 105-112.
43.Prendergast-Miller, M.T., Duvall, M., and Sohi, S.P. 2011. Localisation of nitrate in the rhizosphere of biochar-amended soils. Soil biology and Biochemistry. 43: 2243-2246.
44.Qiao, Y., Wu, J., Xu, Y., Fang, Z., Zheng, L., Cheng, W., Tsang, E.P., Fang, J., and Zhao, D. 2017. Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. Ecological engineering, 106: 515-522.
45.Rajaie, M., and Tavakoly, A.R. 2018. Iron and/or acid foliar spray versus soil application of Fe-EDDHA for prevention of iron deficiency in Valencia orange grown on a calcareous soil. J. Plant Nutr. 41: 150-158.
46.Ramzani, P.M.A., Khalid, M., Naveed, M., Ahmad, R., and Shahid, M. 2016. Integrating the organic amendment with iron fertilization for improving productivity and Fe biofortification in rice under acidified calcareous soil. Pak. J. Agric. Sci. 53: 2. 407-417.
47.Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids.P 417-235. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston and M.E. Sumner. (eds.), Methods of Soil Analysis Part 3. Soil Science Society of America and American Society of Agronomy, Madison.
48.Sadegh-Zadeh, F., Tolekolai, S.F., Bahmanyar, M.A., and Emadi, M. 2018. Application of Biochar and Compost for Enhancement of Rice (Oryza Sativa L.) Grain Yield in Calcareous Sandy Soil. Communications in Soil Science and Plant Analysis. 49: 552-566.
49.Salardini, A.A., and Murphy, L.S. 1978. Grain sorghum (Sorghum bicolor Pers.) responses to organic iron on calcareous soils. Plant and Soil. 49: 57-70.
50.Salim, B.B.M. 2016. Influence of biochar and seaweed extract applications on growth, yield and mineral composition
of wheat (Triticum aestivum L.) under sandy soil conditions. Annals of Agricultural Sciences. 61: 257-265.
51.Samsuri, A.W., Sadegh-Zadeh, F., and Seh-Bardan, B.J. 2013. Adsorption of As (III) and As (V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. J. Environ. Chem. Engin. 1: 981-988.
52.Schultz, H., Dunst, G., and Glaser, B. 2013. Positive effects of composted biochar on plant growth and soil fertility. Agronomy for Sustainable Development, 33: 4. 817-827.
53.Schumacher, B.A. 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. In: Soils and Sediments. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-02/069 (NTIS PB2003-100822).
54.Shamim, M.I.A., Dijkstra, F.A., Abuyusuf, M., and Hossain, A.I. 2015. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere. 25: 713-719.
55.Song, W., and Guo, M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis. 94: 138-145.
56.Suksabye, P., Pimthong, A., Dhurakit, P., Mekvichitsaeng, P., and Thiravetyan, P. 2016. Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil. Environmental Science and Pollution Research. 23: 962-973.
57.Sumner, M.E., Miller, W.P., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., and Johnston, C.T. 1996. Cation exchange capacity and exchange coefficients. P 1201-1229, In: D.L. Sparks, et al. (eds.), Methods of Soil Analysis. Part 3. Chemical Methods. SSSA and ASA, Madison, WI, USA.
58.Sun, Y., Gao, B., Yao, Y., Fang,J., Zhang, M., Zhou, Y., Chen, H.,and Yang, L. 2014. Effects of feedstock type, production method and pyrolysis temperature on biochar and hydrochar properties. Chem. Engin. J. 240: 574-578.
59.Suppadit, T., Phumkokrak, N., and Poungsuk, P. 2012. The effect of using quail litter biochar on soybean (Glycine max [L.] Merr.) production. Chilean J. Agric. Res. 72: 244.
60.Tafvizi, M., Motesharezadeh, B., and Savaghebi, G. 2014. Investigating the effects of lead contamination and foliar application of iron on some physiological characteristics in two forage corn (Zea mays L.) hybrids in calcareous soil. Iran. J. Field Crop Sci. 45: 2. 213-226. (In Persian)
61.Thomas, G.W. 1996. Soil pH and soil acidity. P 475-490, In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (eds.) Methods of Soil Analysis. Part 3. Chemical Methods. SSSA and ASA, Madison, WI, USA.
62.Tisdale, S., Nelson, W., Havlin, J., and Beaton, J. 1999. Soil fertility and fertilizers. An introduction to nutrient management. 503p.
63.Usman, A.R.A., Al-Wabel, M.I., Abdulaziz, A.H., Mahmoud, W.A.,EL-Naggar, A.H., Ahmad, M., Abdulelah, A.F., and Abdulrasoul, A.O. 2016. Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere. 26: 27-38.
64.Uzoma, K.C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., and Nishihara, E. 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management. 27: 205-212.
65.Van Zwieten, L., Kimber, S., Morris,S., Chan, K.Y., Downie, A., Rust,J., Joseph, S., and Cowie, A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil. 327: 235-246.
66.Wang, K., Wang, P., Liu, J., Sparrow, M., Haginoya, S., and Zhou, X. 2005. Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan Plateau. Boundary-Layer Meteorology. 116: 117-129.
67.Waqas, M., Kim, Y.H., Khan, A.L., Shahzad, R., Asaf, S., Hamayun, M., Kang, S.M., Khan, M.A., and Lee, I.J. 2017. Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters. J. Zhejiang Univ. Sci. B. 18: 109-124.
68.Welch, R.M. 2002. The impact of mineral nutrients in food crops on global human health. Plant and Soil. 247: 83-90.
69.World Agricultural Production. 2011. United States Department of Agriculture. Foreign Agricultural Service Circular Series WAP 04-11. (https://downloads.usda.library.cornell.edu/usda-esmis /files/ 5q47rn 72z/  7d278t47g/7s75dc87f/worldag-production- 04-08-2011.pdf.
70.Xu, G., Wei, L.L., Sun, J.N., Shao, H.B., and Chang, S.X. 2013. What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct or indirect mechanism?. Ecological engineering. 52: 119-124.
71.Yang, L., Liao, F., Huang, M., Yang, L., and Li, Y. 2015. Biochar improves sugarcane seedling root and soil properties under a pot experiment. Sugar technology. 17: 1. 36-40.
72.Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., He, L., Lin, X., Che, L., Ye, Z., and Wang, H. 2016. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb and Zn) and enzyme activity in soil. Environmental Science and Pollution Research.23: 974-984.
73.Yao, Y., Gao, B., Zhang, M., Inyang, M. and Zimmerman, A.R. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere. 89: 1467-1471.
74.Yooyen, J., Wijitkosum, S., and Sriburi, T. 2015. Increasing yield of soybean by adding biochar. J. Environ. Res. Dev.
9: 4. 1066. 1074.