مروری بر روش‌های اندازه‌گیری کربن خاک‌: ملاحظات تجربی، مزایا و معایب

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم خاک، دانشگاه زنجان

2 دانشیار، گروه علوم خاک، دانشگاه زنجان

3 دانشیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی

4 استاد ، گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

کربن آلی خاک از مهم‌ترین شاخص‌های قضاوت کیفیت، سلامت و حاصلخیزی خاک محسوب می‌شود‌؛ بنابراین، اندازه‌گیری دقیق، سریع و کم‌هزینه آن برای تدوین روش‌های مدیریتی و حفاظتی که منجر به ترسیب و افزایش کربن یا حداقل حفظ آن در خاک ‌شود، ضروری است. روش‌های اندازه‌گیری کربن خاک به‌طورکلی در دو دسته خارج از منطقه نمونه‌برداری و روش‌های نوین اندازه‌گیری در جا، طبقه‌بندی می‌شوند. دسته اول که شامل نمونه‌برداری سنتی از خاک و تخریب شیمیایی آزمایشگاهی ماده آلی خاک با استفاده از روش‌های احتراق‌تر و احتراق خشک هستند، اغلب پرهزینه، وقت‌گیر و مخرب محیط‌زیست می‌باشند و خطاهای رایج نمونه‌برداری و تجزیه‌های آزمایشگاهی در بسیاری موارد باعث کم شدن دقت این روش‌ها می‌شوند. روش‌های اندازه‌گیری در منطقه که شامل طیف‌سنجی بازتاب مادون‌قرمز، پراکندگی ناکشسان نوترونی، طیف‌سنجی فروشکست القایی لیزر و سنجش‌ازدور هستند، با افزایش دقت و سرعت اندازه‌گیری و کاهش فراوان هزینه‌های نمونه‌برداری و تجزیه‌های آزمایشگاهی، به‌ویژه در مطالعات کلان ملی، بسیار راهگشا می‌باشند. آمارهای پایش سرتاسری کیفیت خاک‌های کشاورزی ایران نشان داده است که در بیش از 60 درصد اراضی، میزان کربن آلی خاک کمتر از یک درصد است و بررسی‌های متوالی نیز مؤید روند کاهشی ذخایر کربن آلی ‌خاک‌های اکثر مناطق کشور است. قرار گرفتن بیش از 80 درصد مساحت ایران در اقلیم خشک و نیمه‌خشک و محتوی کم کربن آلی این خاک‌ها از یک‌سو و شوری مساحت قابل‌توجه و آهکی بودن غالب خا‌ک‌های ایران از سوی دیگر، روش صحیح اندازه‌گیری کربن آلی این خاک‌ها را به موضوعی چالشی و بحث‌برانگیز تبدیل کرده است. اگرچه در بین روش‌های اندازه‌گیری کربن خاک، استفاده از سنجش‌گرهای خودکار کربن، به‌عنوان روش استاندارد و مرجع شناخته می‌شوند؛ اما در خاک‌هایی که حاوی مقادیر زیادی کربنات‌ هستند، در اغلب موارد هنگام احتراق نمونه تبدیل کربنات‌ها به کربن دی‌اکسید ناقص انجام می‌شود؛ بنابراین، استفاده از روش‌های احتراق‌تر، به دلیل تأثیر نپذیرفتن آن از حضور کربنات‌ها و محاسبه مستقیم کربن آلی مطلوب‌تر است. تمامی راهکارهای سنجش مقدار کربن آلی خاک نقاط قوت و ضعفی دارند که انتخاب آن ابزار یا روش اندازه‌گیری را منوط به ویژگی‌های خاک موردبررسی، هدف پروژه و بودجه تخصیص ‌یافته می‌کند. لذا با توجه به عدم وجود مطالعه‌‌ای جامع در این زمینه، این مطالعه با هدف کمک به ایجاد نگرشی بهتر نسبت به نتایج حاصل از روش والکلی‌بلک که اصلی‌ترین روش اندازه‌گیری کربن آلی خاک‌های کشور است و نیز کمک به تدوین پروتکلی استاندارد برای اندازه‌گیری کربن آلی خاک‌های شور و آهکی ایران، به ارزیابی مقایسه‌ای روش‌های اندازه‌گیری کربن خاک با تشریح نقاط قوت و ضعف آن‌ها پرداخته است.

کلیدواژه‌ها


عنوان مقاله [English]

A review of soil carbon measurement methods: Experimental considerations, advantages and disadvantages

نویسندگان [English]

  • Saba Bagherifam 1
  • Mohammad Amir Delavar 2
  • Pyman Keshavarz 3
  • Alireza Karimi 4
1 PhD student Dept. of Soil Science and Engineering, University of Zanjan
2 Associate Professor
3 Soil and Water Research Institute, Khorasan Razavi Agricultural and Natural Resources Research and Education Center
4 Professor, Dept. of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

Soil organic carbon is one of the most important basis for assessing soil quality, health, and fertility. Therefore, accurate, rapid, and inexpensive measurement of soil organic carbon is essential to determine efficient management and conservation practices, which might increase carbon sequestration or preservation in soils. Soil carbon measurement methods are generally classified into two categories: ex-situ and new in situ methods. The first category includes traditional field-collected samples and chemical laboratory degradation of soil organic matter using wet and dry combustion methods. These methods are often expensive, time-consuming, and environmentally destructive. In many cases, common sampling and laboratory errors have resulted in these approaches to be less precise. In situ methods, including infrared reflectance spectroscopy, laser-induced breakdown spectroscopy, inelastic neutron scattering, and remote sensing, are considered more efficient, especially in large-scale national studies as utilizing such methods may increase the speed and accuracy of measuring and significantly reduce the cost of conventional field sampling and laboratory analysis. National quality monitoring of Iranian agricultural soils showed that in more than 60% of lands, soil organic carbon content is less than one percent and further studies have confirmed the declining trend of organic carbon storages in most parts of the country. On one hand, more than 80% of Iran's land area is located in an arid and semi-arid climate whose soils are low in organic carbon content, and on the other hand, the salinity and predominance of calcareous soils in vast areas of Iran have become controversial issues, which have made the attempts to find the correct method of measuring the organic carbon of these soils more complicated. Although the use of an automated carbon analyzer is considered as the standard method for comparing the ex-situ soil carbon measurements, the incomplete conversion of carbonate to CO2 under the combustion conditions in highly calcareous soils might happens which is problematic. Therefore, the use of wet combustion methods is more popular because it’s not affected by the presence of carbonates and the direct calculation of organic carbon. All soil organic carbon measurement methods have strengths and weaknesses, so its choice depends on the characteristics of the studied soils, the purpose of the project as well as the financial considerations, and the allocated budget. Considering the lack of comprehensive studies in this field, the present study aims to help to gain a better understanding of the results of the Walkley Black method, as the basic method of measuring soil organic carbon in Iran, and to assist with developing a standard and robust protocol for measuring the organic carbon of saline and calcareous soils of Iran, and finally to comparatively evaluate the soil carbon measurement methods by outlining their strengths and weaknesses.

کلیدواژه‌ها [English]

  • SOC to SOM conversion factor
  • Wet combustion
  • Walkley Black method
  • Infrared reflectance spectroscopy
  1. 1.Abasian, A., Delavar, M.A., Golchin, A., and Beheshti, A. 2014. Aggregate stability in relation to carbon, nitrogen, carbohydrate and calcium carbonate content in Histosols. Soil Management and Sustainable Production. 4: 1. 1-26.
    (In Persian)

    2.Abella, S.R., and Zimmer, B.W. 2007. Estimating organic carbon from loss-on-ignition in northern Arizona forest
    soils. Soil Science Society of America. 71: 2. 545-550.

    3.Allison, L. 1965. Total Carbon. P 1367-1378. In: C. A. Black. (ed.). Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. American society of agronomy, Madison, Wisconsin.

    4.Anabitarte, F., Cobo, A., and Lopez-Higuera, J.M. 2012. Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges. ISRN Spectroscopy. 1: 1-12.5.Angelova, V.R., Akova, V.I.,Ivanov, K.I., and Licheva, P.A.
    2014. Comparative study of titimetric methods for determination of organic carbon in soils, compost and sludge. International Science Public Ecology Safety. 8: 1. 430-440.6.

    6.Bagherifam, S., Karimi, A., Lakzian, A., and Izanloo, E. 2013. Effects of land use management on soil organic carbon, particle size distribution and aggregate stability along hillslope in semi-arid areas of northern Khorasan. Journal of Soil
    and Water Conservation
    . 20: 4. 51-73.(In Persian)

    7.Bagherifam, S., Karimi, A., and Lakzian, A. 2015. Land management and its impact on soil enzyme activity. 1st national conference on maintenance of environmen, water and natural resources . 22-24 May, Arak, Iran. (In Persian)

    8.Bahadori, M., and Tofighi, H. 2016. A modified Walkley-Black method based on spectrophotometric procedure. Communications in Soil Science and Plant Analysis. 47: 2. 213-220.

    9.Bahadori, M., and Tofighi, H. 2017. Investigation of soil organic carbon recovery by the Walkley-Black method under diverse vegetation systems. Soil Science. 182: 3.101-106.

    10.Baker, G.O. 1936. A study of the practicability of the Walkley and Black method for determining soil organic matter. Soil Science. 141: 1. 47-52.

    11.Balali, M.R., Rezaei, H., and Moshiri, F. 2014. Fertility of the Iran's soils and the need to improve its ability to provide services to agricultural products. In: Khavazi, K Comprehensive program of soil fertility and plant nutrition in order to increase the self-reliance of strategic crops 2014-2025. Soil and Water Research Institute, Karaj, Iran. 17-48. (In Persian)

    12.Baseri, N., Ostan, Sh., Reyhanitabar, A., and Shahbazi, F. 2019. Evaluation of correcting the amounts of organic carbon measured in salt affected soils. MSc thesis. University of Tabriz. 115p. (In Persian)

    13.Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science.
    47: 2. 151-163.

    14.Baumgardner, M., Kristof, S., Johannsen. C., and Zachary, A. 1969. Effects of organic matter on the multispectral properties of soils. Proceedings of the Indiana Academy of Science. Pp: 413-423.

    15.Ben-Dor, E., and Banin, A. 1995. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America. 59: 2. 364-372.

    16.Ben‐Dor, E., and Banin, A. 1989. Determination of organic matter content in arid‐zone soils using a simple “loss‐on‐ignition” method. Communications in Soil Science and Plant Analysis.20: 16. 1675-1695.

    17.Bernoux, M., Feller, C., Cerri, C., Eschenbrenner, V., and Cerri, C. 2006. Soil carbon sequestration. In: Stockmann, U., and Adams, A. 2103. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment. 164: 1. 80-99.

    18.Bhattacharyya, T., Chandran, P., Ray, S., Mandal, C., Tiwary, P., and Pal, D. 2015. Walkley-Black recovery factor to reassess soil organic matter: Indo-Gangetic plains and black soil region of India case studies. Communications
    in Soil Science and Plant Analysis.
    46: 20.2628-2648.

    19.Bohn. 1982. Estimate of organic carbon in world soils: II. Soil science society of America Journal. 46: 5. 1118-1129.

    20.Bonino, E.E. 2006. Changes in carbon pools associated with a land-use gradient in the Dry Chaco, Argentina. Forest Ecology and Management.223: 3. 183-189.

    21.Buringh. 1984. Organic carbon in soils of the world. The role of terrestrial vegetation in the global carbon cycle: Measurement by remote sensing. Wiley, New York. Pp: 91-109.

    22.Chaikaew, P., and Chavanich, S. 2017. Spatial variability and relationship of mangrove soil organic matter to organic carbon. Applied and Environmental Soil Science. 2017: 1. 1-9.

    23.Chatterjee, A., Lal, R., Wielopolski, L., Martin, M.Z., and Ebinger, M. 2009. Evaluation of different soil carbon determination methods. Critical Reviews in Plant Science. 28: 3. 164-178.

    24.Chen, F., Kissel, D.E., West, L.T., Adkins, W., Rickman, D., and Luvall, J. 2008. Mapping soil organic carbon concentration for multiple fields with image similarity analysis. Soil Science Society of America. 72: 1. 186-193.

    25.Chen, F., Kissel, D.E., West, L.T., and Adkins, W. 2000. Field-scale mapping of surface soil organic carbon using remotely sensed imagery. Soil Science Society of America. 64: 2. 746-753.

    26.Christensen, B.T., and Malmros, P.A. 1982. Loss‐on‐ignition and carbon content in a beech forest soil profile. Ecography. 5: 4. 376-380.

    27.Christy, C.D. 2008. Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Computers and Electronics in Agriculture. 61: 1. 10-19.

    28.Conant, R.T., Paustian, K., and Elliott, E.T. 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications.11: 2. 343-355.

    29.Cremers, D.A., Ebinger, M.H., Breshears, D.D., Unkefer, P.J., Kammerdiener, S.A., and Ferris, M.J. 2001. Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS). Journal of Environmental Quality. 30: 6. 2202-2216.

    30.Cremers, D.A., and Chinni, R.C. 2009. Laser-induced breakdown spectroscopy-capabilities and limitations. Applied Spectroscopy Reviews. 44: 6. 457-506.

    31.Davenport, J., Thomas, R., and Mott, S. 1988. Carbon mineralization of corn (Zea mays L.) and bromegrass (Bromus inermis Leyss.) components with an emphasis on the below-ground carbon. Soil Biology and Biochemistry. 20: 4. 471-476.

    32.De Vos, B., Lettens, S., Muys, B., and Deckers, J.A. 2007. Walkley–Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use and Management. 23: 3. 221-229.

    33.De Vos, B., Vandecasteele, B., Deckers, J., and Muys, B. 2005. Capability of loss‐on‐ignition as a predictor of total organic carbon in non‐calcareous forest soils. Communications in Soil Science and Plant Analysis. 36: 19-20. 2899-2921.

    34.Demattê, J.A., Campos, R.C., Alves, M.C., Fiorio, P.R., and Nanni, M.R. 2004. Visible–NIR reflectance: a new approach on soil evaluation. Geoderma. 121: 1-2. 95-112.

    35.Díaz‐Zorita, M. 1999. Soil organic carbon recovery by the Walkley‐Black method in a typic hapludoll. Communications in Soil Science and Plant Analysis. 30: 5-6. 739-745.

    36.Donkin, M. 1991. Loss‐on‐ignition as an estimator of soil organic carbon in A‐horizon forestry soils. Communications in Soil Science and Plant Analysis.22: 3-4. 233-241.

    37.Ebinger, M., Cremers, D., Meyer, C., and Harris, R. 2006. Laser-induced Breakdown Spectroscopy and applications for soil carbon measurement. Carbon sequestration in soils of Latin America Food Products Press, New York. Pp: 407-422.

     

    38.Eswaran, H., Van den Berg, E., Reich, P., and Kimble, J. 1995. Global soil carbon resources. Soils and Global Change. Pp: 

    39.Fortes, F., and Laserna, J. 2010. The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon. Spectrochimica Acta Part B: Atomic Spectroscopy. 65: 12. 975-990.

    40.Freibauer, A., Rounsevell, M.D., Smith, P., and Verhagen, J. 2004. Carbon sequestration in the agricultural soils of Europe. Geoderma. 122: 1. 1-23.

    41.Gehl, R.J., and Rice, C.W. 2007. Emerging technologies for in situ measurement of soil carbon. Climatic Change. 80: 1-

    42.Gelman, F., Binstock, R., and Halicz, L. 2012. Application of the Walkley–Black titration for the organic carbon quantification in organic rich sedimentary rocks. Fuel. 96: 608-620.

    43.Hashemibeni, B., Salehi, M., and Beigi, H.H. 2010. Estimation of Soil Organic Matter by Loss-on-Ignition Procedure in Four Major Plains of Chaharmahal-va-Bakhtiari Province. Water and Soil Science. 50: 13. 77-89. (In Persian)

    44.Heanes, D. 1984. Determination of total organic‐C in soils by an improved chromic acid digestion
    and spectrophotometric procedure. Communications in Soil Science and Plant Analysis. 15: 10. 1191-1213.

    45.Henderson, T., Baumgardner, M., Franzmeier, D., Stott, D., and Coster, D. High dimensional reflectance analysis of soil organic matter. 1992. Soil Science Society of America. 56: 3. 865-872.

    46.Henry, M., Valentini, R., and Bernoux, M. 2009. Soil carbon stocks in ecoregions of Africa. Biogeosciences Discussions. 6: 1. 797-823.

    47.Hiederer, R., and Köchy, M. 2011.Global soil organic carbon estimates and the harmonized world soil database. Publications office of the EUR, Luxembourg. 225p.

    48.Hong, Y., Yu, L., Chen, Y., Liu, Y.,Liu, Y., and Liu, Y. 2018. Prediction of soil organic matter by VIS–NIR spectroscopy using normalized soil moisture index as a proxy of soil moisture. Remote Sensing. 10: 2. 28-40.

    49.Jackson, M. 1958. Soil chemical Analysis constable. Ltd Co, London. 498p.

    50.Jimenez, R., and Ladha, J. 1993. Automated elemental analysis: A rapid and reliable but expensive measurement of total carbon and nitrogen in plant and soil samples. Communications in Soil Science and Plant Analysis.24: 15-16. 1897-1924.

    51.Jobbágy, E.G., and Jackson, R.B. 2000. The vertical distribution of soil organic carbon and its relation to climate
    and vegetation. Ecological Applications. 10: 2. 423-436.

    52.Kaiser, K., and Guggenberger, G. 2007. Distribution of hydrous aluminium and iron over density fractions depends on organic matter load and ultrasonic dispersion. Geoderma. 140: 1-2. 141-158.

    53.Karimi, A., Bagherifam, S., and Shayesteh, Z.H. 2015. Capability of haloxylon in carbon sequestration in sand dunes of Sabzevar. Soil Management and Sustainable Production. 5: 1. 187-200.(In Persian)

    54.Karimi, S.D., Bahrami, M., Babaeian, H., and Hosseini, A.M. 2017. Estimation of some basic soil characteristics by near-infrared visible spectroscopy in Kurdistan province. Iranian Water and Soil Research. 48: 3. 573-585.(In Persian)

    55.Keshavarz, P., Zangiabadi, M., and Abbaszadeh, M. 2013. The effect of soil moisture and salinity on the relationship between soil organic carbon and wheat yield. Iranian Journal of Soil Research. 27: 3. 271-259. (In Persian)

    56.Khayamim, F., Khademi, H., Stenberg, B., and Wetterlind, J. 2015. Capability of vis-NIR Spectroscopy to Predict Selected Chemical Soil Properties in Isfahan Province. Water and Soil Science. 19: 72. 81-92. (In Persian)

    57.Kim, Y., Kimball, J.S., Zhang, K., Didan, K., Velicogna, I., and McDonald, K.C. 2014. Attribution of divergent northern vegetation growth responses to lengthening non-frozen seasons using satellite optical-NIR and microwave remote sensing. International Journal of Remote Sensing. 35: 10. 3700-3721.

    58.Lal, R. 2006. Encyclopedia of soil science: CRC Press. Pp: 1164-1168.

    59.Lefèvre, C., Rekik, F., Alcantara, V., and Wiese, L. 2017. Soil organic carbon: the hidden potential: Food and Agriculture Organization of the United Nations (FAO). 57p.

    60.Madari, B.E., Reeves, III JB., Coelho, M.R., Machado, P.L., De‐Polli, H., and Coelho, R.M. 2005. Mid‐and near‐infrared spectroscopic determination of carbon in a diverse set of soils from the Brazilian National Soil Collection. Spectroscopy Letters. 38: 6. 721-740.

    61.Mallah, S., Homaei, M., and Noroozi, A. 2012. Overview of remote sensing of organic matter. 1st National Conference on Strategies for Achieving Sustainable Development. 10-11 March, Karaj, Iran. (In Persian)

    62.Martin, M.Z., Wullschleger, S.D., Garten, C.T., and Palumbo, A.V. 2003. Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils. Applied Optics. 42: 12. 2072-2077.

    63.Matinfar, H. 2019. Evaluate the effectiveness of near-infrared visible spectroscopy in estimating soil organic matter. 2nd International Conferenceand 6th National Conference on Organic and Conventional Agriculture. 26 May, Tehran, Iran. (In Persian)

    64.McLeod, S. 1973. Studies of wet oxidation procedures for the determination of organic carbon in
    soils. Soils, Notes on Soil Techniques. Pp: 73-79.

    65.Mebius, L.J. 1960. A rapid method for the determination of organic carbon in soil. Analytica Chimica Acta.22: 120-128.

    66.Meersmans, J., van Wesemael, B., De Ridder, F., Fallas Dotti, M., De Baets, S., and Van Molle, M. 2009.Changes in organic carbon distribution with depth in agricultural soils in northern Belgium, 1960–2006. Global Change Biology.15: 11. 2739-2750.

    67.Merry, C.J., and Levine, E.R. 1995. Methods to assess soil carbon using remote sensing techniques. Soils and Global Change. 5: 250-265.

    68.Mikhailova, E., Noble, R., and Post, C. 2003. Comparison of soil organic carbon recovery by Walkley-Black and dry combustion methods in the Russian Chernozem. Communications in Soil Science and Plant Analysis.34: 13-14. 1853-1860.

    69.Mirzaee, S., Ghorbani-Dashtaki, S., Mohammadi, J., Asadi, H., and Asadzadeh, F. 2016. Spatial variability of soil organic matter using remote sensing data. Catena. 145: 118-127.

    70.Moghiseh, E., Ghanadi, M.M., and Heidari, A. 2013. Impacts of land use on variation of soil 14C- age and determination of organic matter quality by FTIR spectrometry. nuclear science and technology. 64: 2. 19-27.(In Persian)

    1. Momeni, A. 2011. Geographical distribution and salinity levels of Iranian soil resources. Soil Research.24: 3. 203-215. (In Persian)

    72.Muñoz Rojas, M., Jordán, A., Martínez Zavala, L., González Peñaloza, F., Rosa, D., Anaya, A., and Romero, M.
    2013. Modelling soil organic carbon stocks in global change scenarios: a Carbon soil application. Biogeosciences. 10: 8253-8268.

    73.Nelson, D.W., and Sommers, L.E. 1996. Total carbon, organic carbon, and organic matter. P 961-1010. In: D.L. Sparks (ed.). Methods of soil analysis: Part 3. Chemical methods. American society of agronomy, Madison, Wisconsin.

    74.Noroozi, A.A., Rezghi, Z., and Homaee, M. 2019. The effect of soil moisture on the accuracy of the spectroscopy method in estimating the amount of soil organic matter. Soil and Water Resourses Conservation. 8: 3. 119-132. (In Persian)

    75.Pribyl, D.W. 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma.156: 3-4. 75-83.

    76.Ramamoorthi, V., and Meena, S. 2018. Quantification of Soil Organic Carbon-Comparison of Wet Oxidation and Dry Combustion Methods. International Journal of Current Microbiology and Applied Sciences. 7: 1. 146-154.

    77.Ranjbar, G., and Pirasteh-Anosheh, H. 2015. A glance to the salinity research in Iran with emphasis on improvement of field crops production. Iranian Journal of Crop Sciences. 17: 2. 165-178.(In Persian)

    78.Raveh, A., and Avnimelech, Y. 1972. Potentiometric determination of soil organic matter. Soil Science Society of America. 36: 6. 967-988.

    79.Rayment, G., and Higginson, F.R. 1992. Australian laboratory handbook of soil and water chemical methods: Inkata Press Pty Ltd. 568p.

    80.Rumpel, C., Balesdent, J., Grootes, P., Weber, E., and Kögel-Knabner, I.2003. Quantification of lignite-and vegetation-derived soil carbon using 14C activity measurements in a forested chronosequence. Geoderma. 112: 1-2. 155-166.

    81.Rumpel, C., Janik, L.J., Skjemstad, J., and Kögel-Knabner, I. 2001. Quantification of carbon derived from lignite in soils using mid-infrared spectroscopy and partial least squares. Organic Geochemistry. 32: 6. 831-839.

    82.Running, S.W., Loveland, T.R., Pierce, L.L., Nemani, R.R., and Hunt, J.R. 1995. A remote sensing based vegetation classification logic for global land cover analysis. Remote sensing of Environment. 51: 1. 39-48.

    83.Russell, C. 2003. Sample preparation and prediction of soil organic matter properties by near infra-red reflectance spectroscopy. Communications in Soil Science and Plant Analysis.34: 11-12. 1557-1572.

    84.Saadat, S.R., Bagheri, H., Davoodi, Y.R., Ghaemian, M.H., Bavardi, N., Sattari, A., and Shiraz, M.R. 2018. Final report of soil chemical change changes in soil quality monitoring databases. Soil and Water Research Institute, Karaj, Iran. (In Persian)

    85.Saffari, A., Ataei, M., and Sereshki, F. 2020. Studying Relationship between Coal Intrinsic Characteristics in Spontaneous Combustion of Coal Potential Using Crossing Point Temperature Test Method. Mining and Environment. 11: 1. 315-333.

    86.Santi, C., Certini, G., and D'Acqui, L.P. 2006. Direct determination of organic carbon by dry combustion in soils
    with carbonates. Communications in Soil Science and Plant Analysis.37: 1-2. 155-162.

    87.Scharlemann, J.P., Tanner, E.V., Hiederer, R., and Kapos, V. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management. 5: 1. 81-91.

    88.Schlesinger. 1977. Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics. 8: 1. 51-81.

    89.Schnitzer, M. 1991. Soil organic matter the next 75 years. Soil Science. 151: 1. 41-58.

    90.Schollenberger, C.A. 1927. rapid approximate method for determining soil organic matter. Soil Science.24: 1. 65-68.

    91.Schulte, E., and Hopkins, B. 1996. Estimation of soil organic matter by weight loss‐on‐ignition. Soil organic matter: Analysis and Interpretation.46: 2. 21-31.

    92.Schulte, E., Kaufmann, C., and Peter, J. 1991. The influence of sample size and heating time on soil weight loss‐on‐ignition. Communications in Soil Science and Plant Analysis. 22: 1-2. 159-168.

    93.Schumacher, B.A. 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecological Risk Assessment Support Center Office of Research and Development US. Environmental Protection Agency. Pp: 1-26.

    94.Senesi, G.S., and Senesi, N. 2016. Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon. A review. Analytica Chimica Acta. 938: 1. 7-17.

    95.Shahbazi, K., and Besharati, H. 2013. An overview of the fertility status of Iranian agricultural soils. Land Management. 1: 1. 1-15. (In Persian)

    96.Skjemstad, J., Spouncer, L., Cowie, B., and Swift, R. 2004. Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Soil Research. 42: 1. 79-88.

    97.Skjemstad, J., and Taylor, J. 1999. Does the Walkley‐Black method determine soil charcoal? Communications in
    Soil Science and Plant Analysis.30: 15-16. 2299-2310.

    98.Sleutel, S., De Neve, S., Singier, B., and Hofman, G. 2007. Quantification of organic carbon in soils: a comparison of methodologies and assessment of the carbon content of organic matter. Communications in Soil Science and Plant Analysis. 38: 19-20. 2647-2657.

    99.Smith, K.A., and Tabatabai, M.A. 2003. Automated instruments for the determination of total carbon, hydrogen, nitrogen, sulfur, and oxygen. Soil and Environmental Analysis; Modern Instrumental Techniques. 18: 3. 202-246.

    100.Soon, Y., and Abboud, S.A. 1991. Comparison of some methods for
    soil organic carbon determination. Communications in Soil Science and Plant Analysis. 22: 9-10. 943-954.

    101.Stockmann, U., Adams, M.A., Crawford, J.W., Field, D.J., Henakaarchchi, N., and Jenkins, M. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment. 164: 1. 80-99.

    102.Tabatabai, M. 1996. Soil organic matter testing: An overview. Soil organic matter: Analysis and Interpretation. 46: 2. 1-9.

    103.Tinsley, J. 1950. The determination of organic carbon in soils by dichromate mixtures. Transactions 4th International Congress of Soil Science. 1: 161-164.

    104.Tyurin, I.V. 1931. A new modification of the volumetric method of determining soil organic matter
    by means of chromic acid. Pochvovedenie. 26: 36-47.

    105.Usman, S., and Patil, A. 2018. Radiation detector deadtime and pile up: A review of the status of science. Nuclear Engineering and Technology. 50: 7. 1006-1016.

    106.Ussiri, D.A., and Lal, R. 2008. Method for determining coal carbon in the reclaimed minesoils contaminated with coal. Soil Science Society of America. 72: 1. 231-247.

    107.Vaghefi, S.A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., and Yang, H. 2019. The future of extreme climate in Iran. Scientific Reports. 9: 1. 1-11.

    108.Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. 37: 1. 29-38.

    109.Walkley, A. 1947. A critical examination of a rapid method for determining organic carbon in soils effect of variations in digestion conditions and of inorganic soil constituents. Soil Science. 63: 4. 251-64.

    110.Wielopolski, L., Orion, I., Hendrey,G., and Rogers, H. 2000. Soil carbon measurement using inelastic neutron scattering. IEEE Trans. Nuclear Science. 47: 1. 914-917.

    111.Wielopolski, L., Chatterjee, A., Mitra, S., and Lal, R. 2011. In situ determination of soil carbon pool by inelastic neutron scattering: Comparison with dry combustion. Geoderma. 160: 3-4. 394-399.

    112.Wielopolski, L., Hendrey, G., Johnsen, K.H., Mitra, S., Prior, S.A., and Rogers, H.H. 2008. Nondestructive system for analyzing carbon in the soil. Soil Science Society of America. 72: 5. 1269-1277.

    113.Wielopolski, L., Mitra, S., Hendrey, G., Orion, I., Prior, S., and Rogers, H. 2004. Nondestructive soil carbon analyzer (ND–SCA). BNL Report. 7220p.

    114.Wright, A.F., and Bailey, J.S. 2001. Organic carbon, total carbon, and total nitrogen determinations in soils of variable calcium carbonate contents using a Leco CN-2000 dry combustion analyzer. Communications in Soil Science and Plant Analysis.32: 19-20. 3243-3258.

    115.Xuemei, L., and Jianshe, L. 2013. Measurement of soil properties using visible and short wave-near infrared spectroscopy and multivariate calibration. Measurement. 46:10. 3808-3814.

    116.Zimmermann, M., Leifeld, J., Schmidt, M., Smith, P., and Fuhrer, J. 2007. Measured soil organic matter fractions can be related to pools in the RothC model. European Journal of Soil Science. 58: 3. 658-667.