تاثیر پسماند جامد کشاورزی-صنعتی و باکتری‌های باسیلوس و سودوموناس بر شاخص‌های اکوفیزیولوژیک در یک خاک لوم

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

استادیار ، گروه علوم خاک، دانشگاه گیلان

چکیده

سابقه و هدف: پسماند جامد صنایع تصفیه روغن زیتون دارای مواد آلی و معدنی با ارزشی است که می‌تواند برای فعالیت جامعه میکروبی خاک و کیفیت آن سودمند باشد. اما این پسماندها دارای مواد سخت‌تجزیه شونده و اسیدهای چرب هستند که نیاز به ریزجاندارن ویژه برای تجزیه کامل آن‌ها در محیط خاک را الزام می‌کند. هدف این پژوهش بررسی شاخص‌های زیستی و اکوفیزیولوژیک خاک (به عنوان سنجه‌های کیفیت خاک) پس از افزودن پسماند جامد کارخانه تصفیه روغن و مایه‌زنی باکتری‌های باسیلوس و سودوموناس به خاک بود.
مواد و روش: آزمایش در قالب طرح کاملاً تصادفی با آرایش فاکتوریل و در سه تکرار انجام شد. فاکتورها شامل سه سطح پسماند (0، 2 و 4%) پنج سطح باکتری (مایه‌زنی نشده، مایه‌زنی شده با باسیلوس بومی، باسیلوس پرسیکوس، سودوموناس بومی، سودوموناس فلورسنس) و هفت زمان نمونه‌برداری (0، 1، 2، 3، 4، 5، 6 ماه) بودند. خاک بدون پسماند و مایه‌زنی نشده هم در آزمایش گنجانده شد. مخلوط‌های خاک-پسماند به مدت 6 ماه در شرایط رطوبتی FC 7/0 و دمای آزمایشگاه (حدود ºC 25) انکوباسیون شدند. در زمان‌های صفر و پایان هر ماه از مخلوط‌ها نمونه‌برداری شده و کربن آلی (OC)، تنفس پایه (BR)، تنفس برانگیخته شده با سوبسترا (SIR) و کربن زیست‌توده میکروبی (MBC) در آن‌ها اندازه‌گیری گردید و شاخص‌های اکوفیزیولوژیک شامل سهم متابولیک (qCO2)، سهم کربن میکروبی (Cmic) و قابلیت دسترسی به کربن (CAI) محاسبه شد. آنالیز داده‌ها با نرم‌افزار SAS 9.4 و مقایسه میانگین آن‌ها با آزمون توکی (05/0>p) انجام گرفت.
یافته‌ها: نتایج آنالیز واریانس نشان داد که پیامد فاکتورها و برهم‌کنش آن‌ها بر بیشتر پارامترها به جز qCO2 معنی‌دار بود (05/0>p). بالاترین اندازه BR و SIR در تیمار پسماند چهار درصد مایه‌زنی شده با باکتری‌های سودوموناس به دست آمد. افزودن پسماند به خاک و مایه‌زنی آن با سودوموناس‌ها نقش مهمی در زیاد شدن این فراسنجه‌ها داشت. به هر روی، با وجود تاثیر مثبت، پسماند مایه‌زنی با باکتری‌ها سبب افزایش MBC نشد. به گونه‌ای که بالاترین اندازه آن در تیمار چهار درصد پسماند مایه‌زنی نشده با باکتری‌ها به دست آمد. کمترین اندازه هر سه فراسنجه هم در تیمار بدون پسماند مایه‌زنی شده با باسیلوس پرسیکوس به دست آمد. افزودن پسماند به خاک سبب افزایش qCO2 شد و بیشترین اندازه آن در تیمارهای دارای سودوموناس بومی دیده شد. افزودن پسماند به خاک و مایه‌زنی آن‌ها با باکتری‌ها سبب کاهش Cmic شد. بالاترین اندازه Cmic در خاک بدون پسماند مایه‌زنی شده با باکتری سودوموناس فلورسنس و کمترین مقدار آن در خاک دارای چهار درصد پسماند مایه‌زنی شده با باسیلوس پرسیکوس به دست آمد. میانگین Cmic در سطوح پسماند صفر، 2 و 4 درصد به ترتیب 3/10، 06/5 و 76/4 mg Cmic gCorg-1 بود. روند تغییرات Cmic با زمان نیز نشان داد که این شاخص در خاک‌های مایه‌زنی شده با باسیلوس‌ها (بومی و پرسیکوس) و همچنین خاک‌های مایه‌زنی نشده با باکتری‌ها روند افزایشی داشت. افزودن پسماند به خاک و مایه‌زنی با سودوموناس‌ها (بومی و فلورسنس) سبب افزایش CAI شد. بیشترین و کمترین مقدار CAI به ترتیب در تیمار 4 درصد پسماند مایه‌زنی شده با سودوموناس فلورسنس و تیمار بدون پسماند مایه‌زنی شده با باسیلوس بومی دیده شد. روند تغییرات CAI با زمان نوسان زیادی داشت و تنها در خاک‌های مایه‌زنی شده با باسیلوس‌ها (بومی و پرسیکوس) روند آن با زمان مثبت بود.
نتیجه‌گیری: در کل، افزودن پسماند جامد کارخانه تصفیه روغن به خاک و مایه‌زنی آن با سودوموناس‌ها اگرچه سهم کربن میکروبی را کاهش داد اما سبب افزایش تنفس پایه میکروبی و کربن قابل دسترس در خاک شد. بنابراین به نظر می‌رسد در صورت اضافه کردن این پسماند به خاک مایه‌زنی آن با با کتری‌های سودوموناس بتواند تجزیه پسماند را در کوتاه مدت تسریع کرده و عناصر غذایی آن را آزاد کند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Agro-industrial Solid Waste and Bacillus and Pseudomonas Bacteria on Ecophysiological Indices in a Loam Soil

نویسندگان [English]

  • Nasrin Ghorbanzadeh
  • Mohammad bagher Farhangi
Soil Science Department, Faculty of agriculture, University of Guilan, Rasht, Iran
چکیده [English]

Background and objectives: Solid waste (SW) of olive oil industries contain valuable organic and inorganic materials can be useful soil quality and its microbial activity. However, these wastes contain fatty acids and recalcitrant materials which require special microorganisms for complete decomposition in soil environment. The aim of this study was to investigate soil biological and ecophysiological indicators (as soil quality indices) after addition of oil refinery plant solid waste and inoculation of Bacillus and Pseudomonas bacteria to soil.
Materials and methods: The experiment was conducted in a completely randomized design with factorial arrangement and three replications. Factors included SW (0, 2 and 4%), inoculated bacteria (no bacteria, native Bacillus sp. native Pseudomonas sp., Bacillus persicus and Pseudomonas fluorescens), and sampling time (0, 1, 2, 3, 4, 5, and 6 months). Soil without SW and uninoculated with bacteria was regarded as control. Soil-SW mixtures incubated at lab temperature (~25 ºC) and 0.7 FC moisture content conditions for 6 months. Sampling was carried out before incubation start and after each month of incubation and organic carbon (OC), basal respiration (BR), substrate induced respiration (SIR), and microbial bimass carbon (MBC) were measured in the samples and ecophysiological parameters including metabolic quotient (qCO2), microbial carbon ratio (Cmic), and available carbon index (CAI), were calculated. Data analysis and mean comparisons were done by Tukey method (p < 0.05) using SAS software package.
Results: The results of variance analysis showed that the effect of all factors and their interactions were significant (p < 0.05) on the studied parameters exept qCO2. The highest values of BR and SIR were obtained in the 4% SW treatment inoculated with Pseudomonads. Adding SW to the soil and inoculating it with Pseudomonads had an important role in the increase of these two parameters. However, despite the positive role of SW, bacterial inoculation did not increase MBC. Where the highest amount of MBC was observed in the 4% SW treatment uninoculated with bacteria. The lowest amount of all three parameters was observed in the 0% SW treatment inoculated with Bacillus persicus. SW addition to soil increased qCO2, and its higher values were observed in the mixtures inoculated with native Pseudomonas sp. SW application and bacteria inoculation to soil decreased Cmic. The highest and lowest Cmic values were observed in soil without SW inoculated with Pseudomonas fluorescens and soil contained 4% SW inoculated with Bacillus persicus, respectively. The mean Cmic values in 0, 2, and 4% SW-mixtures were 10.32, 5.06, and 4.76 mg Cmic gCorg-1, respectively. The trend of Cmic changes over time showed that this parameter had ascending trend in uninoculated soil and soil inoculated with Bacillus (native and persicus) bacteria. SW addition to soil and soil inoculation with Pseudomonads increased CAI. The highest and lowest CAI values were observed in 4% SW-mixtures inoculated with Pseudomonas fluorescens and soil inoculated with native Bacillus sp., respectively. The trend of CAI changes was greatly fluctuated over time and was only positive in Bacillus inoculated soils.
Conclusion: Overall, the addition of oil refinery plants solid waste to the soil and its inoculation with pseudomonads, although reduced microbial carbon ratio, increased microbial basal respiration and available carbon index. Therefore, it seems that if this waste is added to the soil, its inoculation with pseudomonas bacteria can accelerate the decomposition of the waste in the short term and release its nutrients.

کلیدواژه‌ها [English]

  • Basal respiration
  • Metabolic quotient
  • Microbial biomass carbon
  • Organic matter
  • Solid waste
1.Abu-Rumman, G. 2016. Effect of olive mill solid waste on soil physical properties. International Journal of Soil Science. 11: 3. 94-101.
2.Ajami, M., Khormali, F., Ayoubi, S., and Amoozadeh Omrani, R. 2006. Changes in soil quality attributes by conversion of land use on a loess hillslope in Golestan Province, Iran. In 18th International Soil Meeting (ISM) on Soil Sustaining Life on Earth, Maintaining Soil and Technology Proceedings, Soil Science Society of Turkey. 5: 2. 501-504.
3.Allouche, N., Fki, I., and Sayadi, S. 2004. Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. Journal of Agricultural and Food Chemistry.52: 2. 267-273.
4.Anderson, T.H. 2003. Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems and. Environment. 98: 1-3. 285-293.
5.Anderson, T.H., and Domsch, K.H. 1993. The metabolic quotient from CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry. 25: 393-395.
6.Anderson, T.H., and Domsch, KH.1990. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry. 22: 2. 251-255.
7.Anderson, T.H., and Domsch, K.H. 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry. 21: 471-479.
8.Annabi, M., Houot, S., Francou, C., Poitrenaud, M., and Bissonnais, Y.L. 2007. Soil aggregate stability improvement with urban composts of different maturities. Soil Science Society of America Journal. 71: 2. 413- 423.
9.Ayoub, S., Al-Absi, K., Al-Shdiefat, S., Al-Majali, D., and Hijazean, D. 2014. Effect of olive mill wastewater land-spreading on soil properties, olive tree performance and oil quality. Scientia Horticulturae. 175: 160-6.
10.Bardgett, G.D., and Saggar, S. 1994. Effect of heavy metal contamination on the short-term decomposition of labelled (14C) in a pasture soil. Soil Biology and Biochemistry. 26: 727-733.
11.Chakarborty, U., Chakraborty, B.N.,and Basnet, M. 2006. Plant growth promotion and induction of resistance
in Camellia chninesis by Bacillus megatarium. Journal of Basic Microbiology. 46: 3. 186-195.
12.Chandini, T.M., and Dennis, P. 2002. Microbial activity, nutrient dynamics and litter decomposition in a Canadian Rocky Mountain pine forest as affected by N and P fertilizer. Forest Ecology and Management. 159: 3. 187-201.
13.Choudhary, D.K., and Johri, B.N.2009. Interactions of Bacillus spp.and plants-with special reference to induced systemic resistance (ISR). Microbiological Research. 164: 5. 493-513.
14.Das, K., and Mukherjee, A.K. 2007. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technology.
98: 7. 1339-1345.
15.Didari, M., Amoozegar, M.A., Bagheri, M., Mehrshad, M., Schumann, P., Spröer, C., Sanchez-Porro, C., and Ventosa, A. 2013. Bacillus persicus sp. nov., a halophilic bacterium from a hypersaline lake. International Journal of Systematic and Evolutionary Microbiology. 63: 4. 1229-1234.
16.Environmental Regulations for Reuse and Recycling of Waste Water. 2010. Bulten No 535, Deputy Director of Strategic Control, Ministry of Energy, Iran. (In Persian)
17.Fernandes, S.A.P., Bettiol, W., and Cerri, C.C. 2005. Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity. Applied Soil Ecology. 30: 1. 65-77.
18.Garcia, C., Hernández, T., Roldan, A., Albaladejo, J., and Castillo, V. 2000. Organic amendment and mycorrhizal inoculation as a practice in afforestation of soils with Pinus halepensis Miller: effect on their microbial activity.Soil Biology and Biochemistry.32: 8-9. 1173-1181.
19.Carter, M.R. (Ed.), Gregorich, E.G. 2007. Soil Sampling and Methods of Analysis. Boca Raton: CRC Press. 1264p.
20.Hart, P.B.S., August, J.A., and West, A.W. 1989. Long-term consequences of topsoil mining on select biological
and physical characteristics of two New Zealand loessial soils under grazed pasture. Land Degradation and Development. 1: 77-88.
21.Jenkinson, D.S., and Ladd, J.N. 1981. Microbial biomass in soil: measurement and turnover. Soil Biology and Biochemistry. 5: 1. 415-471.
22.Killham, K. 1994. Soil Ecology. Cambridge University Press, UK. 242p.23.Kloepper, J.W., Ryu, C.M., and Zhang, S. 2004. Induce systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 94: 1259-1266.
24.Leboffe, M.J., and Pierce, B.E. 2015. Microbiology: Laboratory Theory and Application. Morton Publishing Company. 912p.
25.Leita, L., De Nobili, M., Mondini, C., Muhlbachova, G., Marchiol, L., Bragato G., and Contin, M. 1999. Influence
of inorganic and organic fertilization on soil microbial biomass, metabolic quotient and heavy metal bioavailability. Biology and Fertility of Soils.28: 371-376.
26.Luo, Y., Vilain, S., Voigt, B., Albrecht, D., Hecker, M., and Brözel, V.S.2007. Proteomic analysis of Bacillus cereus growing in liquid soil organic matter. FEMS Microbiology Letters. 271: 1. 40-47.
27.Maiti, S.K. 2001. Handbook of Methods in Environmental Studies (Vol. 1). Jaipur: ABD publishers. 321p.
28.Mirahmadi, H., and Safari, A.A. 2003. The effect of lead contamination on basal and substrate induced respiration soil. Proceedings of Congress on Soil and stable environment in Karaj, Iran. (In Persian)
29.Moscatelli, M., Di Tizio, A., Marinari, S., and Grego, S. 2007. Microbial indicators related to soil carbon in Mediterranean land use systems. Soil and Tillage Research. 97: 1. 51-59.
30.Navaro, A.F., Cegarra, J., Roig, A., and Garcia, D. 1993. Relationship between organic matter and carbon contents of organic wastes. Bioresource Technology. 44: 33. 203-207.
31.Nefzaoui, A. 1999. Olive tree by-products. In: ICARDA (Ed.), Aleppo (Syria). Institute National de la Recherche Agronomique de Tunisie (INRAT), Ariana, Tunis, Tunisia. 124p.
32.Nektarios, P.A., Ntoulas, N., McElroy, S., Volterrani, M., and Arbis, G. 2011. Effect of olive mill compost on native soil characteristics and tall fescue turf grass development. Agronomy Journal. 103: 5. 1524-1531.
33.Pascual, J.A., Garcia, C., Hernandez, T., and Ayuso, M. 1997. Changes in the microbial activity of an arid soil amended with urban organic wastes. Biology and Fertility of Soils. 24: 429-434.
34.Raiesi, F. 2006. Carbon and N mineralization as affected by soil cultivation and crop residue in a calcareous wetland ecosystem in Central Iran. Agriculture, Ecosystems and Environment. 112: 3-20.
35.Rastogi, M., Nandal, M., and Khosla, B. 2020. Microbes as vital additives for solid waste composting. Heliyon.6: 2. e03343.
36.Reznick, D., Bryant, M.J., and Bashey, F. 2002. R‐and K‐selection revisited:the role of population regulation in life‐history evolution. Ecology.83: 6. 1509-1520.
37.Rincón, B., Fermoso, F.G., and Borja, R. 2012. Olive oil mill waste treatment: improving the sustainability of the olive oil industry with anaerobic digestion technology. In "Olive Oil-Constituents, Quality, Health Properties and Bioconversions". Pp: 275-292.
38.Roldan, A., Salinas, G.J.R., Alguacil, M.M., Diaz, E., and Caravaca, F. 2005. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma. 129: 178-185.
39.Shahab, S., and Ahmed, N. 2008. Effect of various parameters on the efficiency of zinc phosphate solubilization by indigenous bacterial isolates. African Journal of Biotechnology. 7: 10. 1543-1549.
40.Shirzadeh, N., Aliasgharzad, N., and Najafi, N.A. 2014. Trend of biomass carbon, ecophysiological indicators, basal and substrate induced respiration changes in soil incubated with different lead levels. Soil and Water Science Journal. 22: 111-124. (In Persian)
41.Spohna, M., and Chodak, M. 2015. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils. Soil Biology and Biochemistry. 81: 128-133.
42.Thavasi, R., Jayalakshmi, S., and Banat, I.M. 2011. Effect of biosurfactant and fertilizer on biodegradation of crude
oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresource Technology. 102: 2. 772-778.
43.Weixin, C., Coleman, D.C., Carroll, C.R., and Hoffman, C.A. 1993. In situ measurement of root respiration and soluble C concentrations in the rhizosphere. Soil Biology and Biochemistry. 25: 9. 1189-1196.
44.Wright, A.L., Hons, F.M., and Jr-Matocha, J.E. 2005. Tillage impacts on microbial biomass and soil carbon and nitrogen dynamics of corn and cotton rotations. Appllied Soil Ecology. 29: 85-92.
45.Xue, D., and Huang, X. 2013. The impact of sewage sludge compost on tree peony growth and soil microbiological, and biochemical properties. Chemosphere. 93: 4. 583-589.