1.Adhikari, K., Minasny, B., Greve, B.G., and Greve, M.H. 2014. Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma. 214-215: 101-113.
2.Amini, M., Afyuni, M., Fathianpourb, N., Khademi, H., and Fluchler, H. 2005. Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma. 124: 223-233.
3.Bonfatti, B.R., Hartemink, A.E., Giasson, E., Tornquist, C.G., and Adhikari, K. 2016. Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma. 261: 204-221.
4.Celik, I. 2005. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil and Tillage Research. 83:2. 270-277.
5.Chartin, C., Stevens, A., Goidts, E., Krüger, I., Carnol, M., and van Wesemael, B. 2017. Mapping Soil Organic Carbon stocks and estimating uncertainties at the regional scale following a legacy sampling strategy (Southern Belgium, Wallonia). Geoderma Regional. 9: 73-86.
6.Chen, S., Arrouays, D., Angers, D.A., Chenu, C., Barré, P., Martin, M.P., Saby, N.P., and Walter, C. 2019. National estimation of soil organic carbon storage potential for arable soils: A data-driven approach coupled with carbon-landscape zones. Science of the Total Environment. 666: 355-367.
7.Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J. 2015. System for automated geoscientific analyses (SAGA) v.2.1.4. Geoscientific Model Development.8: 7. 1991-2007.
8.Dai, F., Zhou, Q., Lv, Z., Wang, X., and Liu, G. 2014. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecological Indicators, 45: 184-194.
9.Eskandari, Sh., Nabiollahi, K., and Taghizadeh-Mehrjardi, R. 2018. Digital Mapping of Soil Organic Carbon (Case Study: Marivan, Kurdistan Province). Journal of Water and Soil. 2: 4. 737-750 (In Persian)
10.Falahatkar, S., Hosseini, S.M., Ayoubi, Sh., and Salmanmahiny, A. 2016. Predicting soil organic carbon density using auxiliary environmental variables in northern Iran. Archives of Agronomy and Soil Science. 62: 3. 375-393.
11.Gholipour, S., Kadkhodaei, A., Makkipour, M., and Abadi-Chalaksaraee, A.R. 2016. Comparison of artificial neural network, ΔLogR and cluster analysis for the assessment of organic carbon in hydrocarbon-bearing formations. Geoscience. 25: 98. 147-158 (In Persian)
12.Grimm, R., Behrens, T., Märker, M., and Elsenbeer, H. 2008. Soil organic carbon concentrations and stocks on Barro Colorado Island Digital soil mapping using random forests analysis. Geoderma. 146: 1-2. 102-113.
13.Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I.H. 2009. The WEKA data mining software: an update. ACM SIGKDD explorations newsletter.11: 1. 10-18.
14.Han, F., Hu, W., Zheng, J., Du, F., and Zhang, F. 2010. Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China. Geoderma. 154: 3-4. 261-266.
15.Kuang, B., Tekin Y., and Mouazen A.M. 2015. Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil and Tillage Research. 146: 243-252.
16.Kumar, S., and Lal, R. 2011. Mapping the organic carbon stocks of surface soils using local spatial interpolator. Journal of Environmental Monitoring, 13: 11. 3128-3135.
17.Kumar, S., Lal, R., and Liu, D. 2012. A geographically weighted regression kriging approach for mapping soil organic carbon stock. Geoderma.189: 627-634.
18.Kurdistan Province Management and Planning Organization, Deputy of Statistics and Information. 2018. Statistical yearbook of Kurdistan province in 2017. Country Planning and Budget Organization. (In Persian)
19.Lahooti, P., Emadi, S.M., Bahmanyar, M.A., and Ghajar-Sepanlou, M. 2019. Soil Organic Carbon Mapping By Geostatistics and Artificial Neural Network Methods (Kohgiluyeh and Boyer-Ahmad Province). Journal of Water and Soil. 32: 6. 1135-1148.(In Persian)
20.Lal, R. 2004. Carbon sequestration in soils of central Asia. Land Degradation and Development. 15: 6. 563-572.
21.Li, Q.Q., Yue, T.X., Wang, C.Q., Zhang, W.J., Yu, Y., Li, B., Yang, J., and Bai, G.C. 2013. Spatially distributed modeling of soil organic matter across China: An application of artificial neural network approach. Catena. 104: 210-218.
22.Mahab Gostar Zagros Consulting Engineers. Detailed-executive watershed management studies of Khamesan watershed. Volume Five: Land Suitability Assessment. 2014. Forests, Rangelands and Watershed Management Organization, General Department of Natural Resources of Kurdistan Province. Detailed watershed management study report. (In Persian)
23.Mahmoudzadeh, H., Matinfar, H.R., Taghizadeh-Mehrjardi, R., and Kerry, R., 2020. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Regional. 21:e00260. doi.org/10.1016/ j.geodrs.2020.e00260.
24.Malone, B.P., McBratney, A., Minasny, B., and Laslett, G. 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma. 154: 1-2.138-152.
25.Martin, M., Wattenbach, M., Smith, P., Meersmans, J., Jolivet, C., Boulonne, L., and Arrouays, D. 2010. Spatial distribution of soil organic carbon stocks in France. Biogeosciences. 8: 1053-1065.
26.McBratney, A.B., Santos, M.M., and Minasny, B. 2003. On digital soil mapping. Geoderma. 117: 1-2. 3-52.
27.Moghimi, S., Parvizi, Y., Mahdian, M.H., and Masih-Abadi M.H. 2015. Comparative application of multiple linear regression and artificial neural networks for simulating the effects of topographic factors on organic
carbon changes in soil. Journal of Watershed Engineering and Management, 6: 4. 312-322. (In Persian)
28.Mollazade, K., Omid, M., and Arefi, A. 2012. Comparing data mining classifiers for grading raisins based on visual features. Computers and electronics in agriculture. 84: 124-131.
29.Mulder, V., De Bruin, S., Schaepman, M., and Mayr, T. 2011. The use of remote sensing in soil and terrain mapping a review. Geoderma. 162: 1-2. 1-19.
30.Nabiollahi, K., Eskandari, Sh., Taghizadeh-Mehrjardi, R., Kerry, R., and Triantafalis, J. 2019. Assessing soil organic carbon stocks under land-use change scenarios using random forest models. Carbon Management.10: 63-77.
31.Narjary, B., Meena, M.D., Kumar, S., Kamra, S.K., Sharma, D.K., and Triantafilis, J. 2019. Digital mapping of soil salinity at various depths using an EM38. Soil Use and Management. 35: 2. 232-244.
32.Nelson, D.W., and Sommers, L.E. 1975. A rapid and accurate procedure for estimation of organic carbon in soil. Proceedings of the Indiana Academy of Science. 84: 456-462.
33.Omid, M., Mahmoudi, A., and Omid, M.H. 2010. Development of pistachio sorting system using principal component analysis (PCA) assisted artificial neural network (ANN) of impact acoustics. Expert Systems with Applications. 37: 10. 7205-7212.
34.Pilevar, Shahri, A.R., Ayoubi, Sh., and Khademi, H. 2011. Regression (MLR) Models to Predict Soil Organic Carbon Using Digital Terrain Analysis (Case Study: Zargham Abad Semirom, Isfahan Proviance). Journal of Water and Soil. 24: 6. 1151-1163 (In Persian)
35.Sarmadian, F., Taghizadeh-Mehrjerdi, R., Mohammad-Asgari, H., and Akbarzadeh, Ali. 2010. A Comparison of Neuro-Fuzzy, Artificial Neural Network and Multivariate Regression for Prediction of some Soil Properties (Case Study: Golestan Province). Iranian Soil and Water Research.41: 2. 211-220. (In Persian)
36.Sarvati, M.R., and Ebrahimi, A. 2016. Geographical, climatic and climatic characteristics of Kamyaran region. The First International Conference on Natural Hazards and Environmental Crises in Iran, Solutions and Challenges. Ardabil, https://civilica.com/ doc/ 548900/certificate/print/.
37.Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappie, M., Märker, M., and Saia, S. 2017. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Science of the Total Environment.601: 821-832.
38.Shelukindo, H.B., Semu, E., Singh, B., and Munishi, P. 2014. Predictor variables for soil organic carbon contents in the Miombo woodlands ecosystem of Kitonga forest reserve, Tanzania. International Journal of Agricultural Sciences. 4: 7. 222-231.
39.Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., and Malone, B. 2014. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma. 213: 15-28.
40.Taghizadeh-Mehrjardi, R., Toomanian, N., Khavaninzadeh, A., Jafari, A., and Triantafilis, J. 2016. Predicting and mapping of soil particle‐size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central Iran. European Journal of Soil Science.67: 6. 707-725.
41.Taghizadeh-Mehrjardi, R., Neupane, R., Sood, K., and Kumar, S. 2017. Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter
in South Dakota, USA. Carbon Management, 8: 3. 277-291.
42.Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B., and Triantafilis, J. 2015. Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma. 253: 67-77.
43.Vågen, T.G., and Winowiecki, L.A. 2013. Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. Environmental Research Letters. 8: 1. 015011.
44.Viscarra-Rossel, R., and Behrens, T. 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma. 158: 1-2. 46-54.
45.Wang, S., Zhuang, Q., Wang, Q., Jin, X., and Han, C. 2017. Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province of China. Geoderma. 305: 250-263.
46.Wang, B., Waters, C., Orgill, S., Cowie, A., Clark, A., Liu, D.L., Simpson, M., McGowen, I., and Sides, T. 2018. Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia. Ecological Indicators. 88: 425-438.
47.Were, K., Bui, D.T., Dick, Ø.B., and Singh, B.R. 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators. 52: 394-403.
48.Wiesmeier, M., Spörlein, P., Geuß, U., Hangen, E., Haug, S., Reischl, A., Schilling, B., von Lützow, M., and Kögel-Knabner, I. 2012. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Global Change Biology. 18: 7. 2233-2245.
49.Wilding, L. 1985. Spatial variability: its documentation, accommodation and implication to soil surveys, in Proceedings Soil spatial variability. Workshop, Pp: 166-194.
50.Yang, R.M., Zhang, G.L. Liu, F., Lu, Y.Y., Yang, F., Yang, F., Yang, M., Zhao, Y.G., and Li, D.C. 2016. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators. 60: 870-878.