رقومی‌سازی کربن آلی خاک (مطالعه موردی: شهرستان کامیاران، استان کردستان)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته دکتری ، گروه علوم خاک، دانشگاه لرستان

2 دانشیار، گروه علوم خاک، دانشگاه لرستان،

3 دانشیار ،گروه علوم کشاورزی و منابع طبیعی، دانشگاه اردکان

چکیده

چکیده
سابقه و هدف: کربن آلی خاک نقشی حیاتی درکنترل اقلیم و پایداری محیط زیست دارد. همچنین کربن آلی تاثیر کلیدی بر خصوصیات فیزیکو شیمیایی و بیولوژیکی خاک دارد به نحوی که از آن به عنوان شاخص سلامت خاک نام برده می‌شود. به‌همین جهت، بررسی توزیع مکانی کربن آلی خاک از الزامات برنامه‌ریزی مدیریت اقلیم و خاک می‌باشد. روش‌های مرسوم برآورد کربن آلی خاک پر هزینه و زمان‌بر بوده و قابلیت تکرار و تعمیم به نقاط مشابه را ندارد. در سال‌های اخیر با پیشرفت تکنولوژی و نیاز روز افزون بشر برای دستیابی به اطلاعات زودیافت و صرفه جویی در هزینه، از طریق داده‌کاوی و به کمک تصاویر ماهواره‌ای و پارامترهای محیطی توپوگرافی، رقومی سازی ویژگی‌های خاک از جمله کربن آلی امکانپذیر شده است. نقشه برداری رقومی خاک در واقع توسعه یک مدل عددی یا آماری از رابطه بین متغییرهای محیطی و خصوصیات خاک است که برای داده‌های جغرافیایی زیادی به منظور تولید نقشه رقومی بکار می‌رود. سه هدف اصلی نقشه برداری رقومی خاک عبارت است از: 1) استنباط رابطه بین متغییرهای محیطی و خصوصیات خاک، 2) تولید و ارائه داده‌هایی که پیوستگی خاک-زمین‌نما را بهتر نمایش می‌دهند و 3) بکارگیری صریح دانش کارشناس در طراحی مدل می‌باش همچنین نقشه برداری رقومی با ایجاد بینشی در مورد فرآیندهای خاکسازی، باعث پیشرفت بالقوه پدولوژی و جغرافیای خاک می‌شود.
مواد و روش‌ها: در این پژوهش 110 نمونه خاک به‌همراه 101 پارامتر کمکی جهت پیش بینی کربن آلی خاک در شهرستان کامیاران (استان کردستان) استفاده گردید. با دو مدل رگرسیون خطی چند متغییره و شبکه عصبی مصنوعی به کمک نرم افزار JMP مدلسازی انجام شد.
یافته‌ها: نتایج نشان داد مقدار کربن آلی خاک در بخش‌های غربی و شمال غربی منطقه مورد مطالعه بیشترین مقدار است که شامل مناطق با پوشش جنگلی و مرتعی می‌باشد. متغیرهای کمکی سطح پایه شبکه کانال (40%)، باند 4 (23%)، مقدار آب برگ (20%)، زبری زمین (19%)، فاصله عمودی تا شبکه کانال (18%)، شیب حوزه (18%)، شاخص تفاضل نرمال شده پوشش گیاهی (17%)، سطح حوزه (16%)، جهت شیب (16%)، ارتفاع (16%)، باند 3 (15%)، شاخص جذب انعکاسی (14%)، باند 1 (14%)، باران (13%)، باند 5 (13%)، دمای هوا (12%)، شاخص پوشش گیاهی (11%)، شاخص خیسی توپوگرافی (10%)، شاخص تفاضل پوشش گیاهی (10%) و غیره بیشترین اثر را روی مدل‌سازی کربن آلی خاک در مدل شبکه عصبی مصنوعی داشته‌اند. مدلسازی توزیع کربن آلی خاک توسط شبکه عصبی مصنوعی (97/0 R2=) نتیجه بهتری نسبت به رگرسیون خطی چند متغییره (59/0 R2=) داشته است.
نتیجه‌گیری: نتایج این پژوهش نشان داد که پراکنش کربن آلی بیشتر تحت تأثیر فاکتورهای توپوگرافی، پوشش گیاهی و اقلیم می‌باشد. در مناطقی که به هر دلیل امکان نمونه‌برداری در کل منطقه وجود ندارد، می‌توان از طریق داده‌های محیطی مانند پارامترهای توپوگرافی، اقلیمی و پوشش گیاهی و با روش‌های نوین داده‌کاوی برای تخمین کربن آلی خاک بهره گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Soil Organic Carbon Digital Mapping (Case Study: Kamyaran County, Kurdistan Province)

نویسندگان [English]

  • Hamid Mahmoudzadeh 1
  • Hamid Reza Matinfar 2
  • Ruhollah Taghizadeh-Mehrjardi 3
1 Department of soil science, Agricultural faculty, Lorestan University, Khorram-Abad
2 associated prof. of Lorestan University
3 Department of natural resource, Faculty of natural resource, Ardakan University, Ardakan, Iran
چکیده [English]

Abstract
Background and Objectives: Soil organic carbon plays a vital role in climate control and environmental sustainability. It also has a key impact on the physico-chemical and biological properties of the soil as it is considered an indicator of soil health. Therefore, investigating the spatial distribution of soil organic carbon is one of the requirements of climate and soil management planning. Traditional methods of estimating soil organic carbon are costly and time consuming and cannot be replicated and extended to similar locations. With the advancement of technology and the ever-increasing need for cost-effective information, data mining and satellite imagery and land parameters have been digitized by soil features. Digital soil mapping is the development of a numerical or statistical model of the relationship between environmental variables and soil properties that is used for large geographic data to generate a digital map. The three main goals of soil digital mapping are: 1) inferring the relationship between environmental variables and soil characteristics, 2) producing and presenting data that better demonstrate soil-geography coherence, and 3) applying expert knowledge in model design. Digital mapping also develops the potential of pedology and soil geography by creating insights into burial processes.
Materials and Methods: In this study 110 soil samples along with 101 auxiliary parameters were used to predict soil organic carbon in Kamyaran city (Kurdistan province). Multivariate linear regression models and artificial neural networks were modeled using JMP software.
Results: The results showed that soil organic carbon content was highest in the western and northwestern parts of the study area and was related to forest cover and pasture areas. On the other hand, higher altitudes have higher estimated organic carbon. Auxiliary variables of the channel network base level (40%), band 4 (23%), leaf water content (20%), vector terrain roughness (19%), vertical distance to channel network (18%), catchment slope (18%), Normalized vegetation difference index (17%), catchment area (16%), aspect (16%), dem (16%), band 3 (15%), reflectance absorption index (14%), band 1 (14) %), Rain (13%), band 5 (13%), air temperature (12%), vegetation index (11%), topographic wetness index (10%), vegetation index (10%) and so on had the greatest effect on soil organic carbon modeling, in the artificial neural network model. Modeling soil organic carbon distribution by artificial neural network (R2 = 0.97) performed better than multivariate linear regression (R2 = 0.59). Conclusion: The results of this study showed that the distribution of organic carbon is more influenced by topographic, vegetation and climate factors. In areas where sampling is not possible in the whole area for any reason, it can be used through environmental data such as topographic, climatic and vegetation parameters and with new data mining methods to estimate soil organic carbon.

کلیدواژه‌ها [English]

  • Data Mining
  • Digital Soil Mapping
  • Soil Organic Carbon Zoning
  • Kamyaran County
 1.Adhikari, K., Minasny, B., Greve, B.G., and Greve, M.H. 2014. Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma. 214-215: 101-113.
2.Amini, M., Afyuni, M., Fathianpourb, N., Khademi, H., and Fluchler, H. 2005. Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma. 124: 223-233.            
3.Bonfatti, B.R., Hartemink, A.E., Giasson, E., Tornquist, C.G., and Adhikari, K. 2016. Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma. 261: 204-221.
4.Celik, I. 2005. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil and Tillage Research. 83:2. 270-277.
5.Chartin, C., Stevens, A., Goidts, E., Krüger, I., Carnol, M., and van Wesemael, B. 2017. Mapping Soil Organic Carbon stocks and estimating uncertainties at the regional scale following a legacy sampling strategy (Southern Belgium, Wallonia). Geoderma Regional. 9: 73-86.
6.Chen, S., Arrouays, D., Angers, D.A., Chenu, C., Barré, P., Martin, M.P., Saby, N.P., and Walter, C. 2019. National estimation of soil organic carbon storage potential for arable soils: A data-driven approach coupled with carbon-landscape zones. Science of the Total Environment. 666: 355-367.
7.Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J. 2015. System for automated geoscientific analyses (SAGA) v.2.1.4. Geoscientific Model Development.8: 7. 1991-2007.
8.Dai, F., Zhou, Q., Lv, Z., Wang, X., and Liu, G. 2014. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecological Indicators, 45: 184-194.
9.Eskandari, Sh., Nabiollahi, K., and Taghizadeh-Mehrjardi, R. 2018. Digital Mapping of Soil Organic Carbon (Case Study: Marivan, Kurdistan Province). Journal of Water and Soil. 2: 4. 737-750 (In Persian)  
10.Falahatkar, S., Hosseini, S.M., Ayoubi, Sh., and Salmanmahiny, A. 2016. Predicting soil organic carbon density using auxiliary environmental variables in northern Iran. Archives of Agronomy and Soil Science. 62: 3. 375-393.
11.Gholipour, S., Kadkhodaei, A., Makkipour, M., and Abadi-Chalaksaraee, A.R. 2016. Comparison of artificial neural network, ΔLogR and cluster analysis for the assessment of organic carbon in hydrocarbon-bearing formations. Geoscience. 25: 98. 147-158 (In Persian)
12.Grimm, R., Behrens, T., Märker, M., and Elsenbeer, H. 2008. Soil organic carbon concentrations and stocks on Barro Colorado Island Digital soil mapping using random forests analysis. Geoderma. 146: 1-2. 102-113.
13.Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I.H. 2009. The WEKA data mining software: an update. ACM SIGKDD explorations newsletter.11: 1. 10-18.
14.Han, F., Hu, W., Zheng, J., Du, F., and Zhang, F. 2010. Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China. Geoderma. 154: 3-4. 261-266.
15.Kuang, B., Tekin Y., and Mouazen A.M. 2015. Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil and Tillage Research. 146: 243-252.
16.Kumar, S., and Lal, R. 2011. Mapping the organic carbon stocks of surface soils using local spatial interpolator. Journal of Environmental Monitoring, 13: 11. 3128-3135.
17.Kumar, S., Lal, R., and Liu, D. 2012. A geographically weighted regression kriging approach for mapping soil organic carbon stock. Geoderma.189: 627-634.
18.Kurdistan Province Management and Planning Organization, Deputy of Statistics and Information. 2018. Statistical yearbook of Kurdistan province in 2017. Country Planning and Budget Organization. (In Persian)
19.Lahooti, P., Emadi, S.M., Bahmanyar, M.A., and Ghajar-Sepanlou, M. 2019. Soil Organic Carbon Mapping By Geostatistics and Artificial Neural Network Methods (Kohgiluyeh and Boyer-Ahmad Province). Journal of Water and Soil. 32: 6. 1135-1148.(In Persian)
20.Lal, R. 2004. Carbon sequestration in soils of central Asia. Land Degradation and Development. 15: 6. 563-572.
21.Li, Q.Q., Yue, T.X., Wang, C.Q., Zhang, W.J., Yu, Y., Li, B., Yang, J., and Bai, G.C. 2013. Spatially distributed modeling of soil organic matter across China: An application of artificial neural network approach. Catena. 104: 210-218.
22.Mahab Gostar Zagros Consulting Engineers. Detailed-executive watershed management studies of Khamesan watershed. Volume Five: Land Suitability Assessment. 2014. Forests, Rangelands and Watershed Management Organization, General Department of Natural Resources of Kurdistan Province. Detailed watershed management study report. (In Persian)
23.Mahmoudzadeh, H., Matinfar, H.R., Taghizadeh-Mehrjardi, R., and Kerry, R., 2020. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Regional. 21:e00260. doi.org/10.1016/ j.geodrs.2020.e00260.
24.Malone, B.P., McBratney, A., Minasny, B., and Laslett, G. 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma. 154: 1-2.138-152.
25.Martin, M., Wattenbach, M., Smith, P., Meersmans, J., Jolivet, C., Boulonne, L., and Arrouays, D. 2010. Spatial distribution of soil organic carbon stocks in France. Biogeosciences. 8: 1053-1065.
26.McBratney, A.B., Santos, M.M., and Minasny, B. 2003. On digital soil mapping. Geoderma. 117: 1-2. 3-52.
27.Moghimi, S., Parvizi, Y., Mahdian, M.H., and Masih-Abadi M.H. 2015. Comparative application of multiple linear regression and artificial neural networks for simulating the effects of topographic factors on organic
carbon changes in soil. Journal of Watershed Engineering and Management, 6: 4. 312-322. (In Persian)
28.Mollazade, K., Omid, M., and Arefi, A. 2012. Comparing data mining classifiers for grading raisins based on visual features. Computers and electronics in agriculture. 84: 124-131.
29.Mulder, V., De Bruin, S., Schaepman, M., and Mayr, T. 2011. The use of remote sensing in soil and terrain mapping a review. Geoderma. 162: 1-2. 1-19.
30.Nabiollahi, K., Eskandari, Sh., Taghizadeh-Mehrjardi, R., Kerry, R., and Triantafalis, J. 2019. Assessing soil organic carbon stocks under land-use change scenarios using random forest models. Carbon Management.10: 63-77.
31.Narjary, B., Meena, M.D., Kumar, S., Kamra, S.K., Sharma, D.K., and Triantafilis, J. 2019. Digital mapping of soil salinity at various depths using an EM38. Soil Use and Management. 35: 2. 232-244.
32.Nelson, D.W., and Sommers, L.E. 1975. A rapid and accurate procedure for estimation of organic carbon in soil. Proceedings of the Indiana Academy of Science. 84: 456-462.
33.Omid, M., Mahmoudi, A., and Omid, M.H. 2010. Development of pistachio sorting system using principal component analysis (PCA) assisted artificial neural network (ANN) of impact acoustics. Expert Systems with Applications. 37: 10. 7205-7212.
34.Pilevar, Shahri, A.R., Ayoubi, Sh., and Khademi, H. 2011. Regression (MLR) Models to Predict Soil Organic Carbon Using Digital Terrain Analysis (Case Study: Zargham Abad Semirom, Isfahan Proviance). Journal of Water and Soil. 24: 6. 1151-1163 (In Persian)
35.Sarmadian, F., Taghizadeh-Mehrjerdi, R., Mohammad-Asgari, H., and Akbarzadeh, Ali. 2010. A Comparison of Neuro-Fuzzy, Artificial Neural Network and Multivariate Regression for Prediction of some Soil Properties (Case Study: Golestan Province). Iranian Soil and Water Research.41: 2. 211-220. (In Persian)
36.Sarvati, M.R., and Ebrahimi, A. 2016. Geographical, climatic and climatic characteristics of Kamyaran region. The First International Conference on Natural Hazards and Environmental Crises in Iran, Solutions and Challenges. Ardabil, https://civilica.com/ doc/ 548900/certificate/print/.
37.Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappie, M., Märker, M., and Saia, S. 2017. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Science of the Total Environment.601: 821-832.
38.Shelukindo, H.B., Semu, E., Singh, B., and Munishi, P. 2014. Predictor variables for soil organic carbon contents in the Miombo woodlands ecosystem of Kitonga forest reserve, Tanzania. International Journal of Agricultural Sciences. 4: 7. 222-231.
39.Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., and Malone, B. 2014. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma. 213: 15-28.
40.Taghizadeh-Mehrjardi, R., Toomanian, N., Khavaninzadeh, A., Jafari, A., and Triantafilis, J. 2016. Predicting and mapping of soil particle‐size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central Iran. European Journal of Soil Science.67: 6. 707-725.
41.Taghizadeh-Mehrjardi, R., Neupane, R., Sood, K., and Kumar, S. 2017. Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter
in South Dakota, USA. Carbon Management, 8: 3. 277-291.
42.Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B., and Triantafilis, J. 2015. Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma. 253: 67-77.
43.Vågen, T.G., and Winowiecki, L.A. 2013. Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. Environmental Research Letters. 8: 1. 015011.
44.Viscarra-Rossel, R., and Behrens, T. 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma. 158: 1-2. 46-54. 
45.Wang, S., Zhuang, Q., Wang, Q., Jin, X., and Han, C. 2017. Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province of China. Geoderma. 305: 250-263.
46.Wang, B., Waters, C., Orgill, S., Cowie, A., Clark, A., Liu, D.L., Simpson, M., McGowen, I., and Sides, T. 2018. Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia. Ecological Indicators. 88: 425-438.
47.Were, K., Bui, D.T., Dick, Ø.B., and Singh, B.R. 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators. 52: 394-403.
48.Wiesmeier, M., Spörlein, P., Geuß, U., Hangen, E., Haug, S., Reischl, A., Schilling, B., von Lützow, M., and Kögel-Knabner, I. 2012. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Global Change Biology. 18: 7. 2233-2245.
49.Wilding, L. 1985. Spatial variability: its documentation, accommodation and implication to soil surveys, in Proceedings Soil spatial variability. Workshop, Pp: 166-194.
50.Yang, R.M., Zhang, G.L. Liu, F., Lu, Y.Y., Yang, F., Yang, F., Yang, M., Zhao, Y.G., and Li, D.C. 2016. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators. 60: 870-878.