پیش‌بینی چگالی ظاهری با استفاده از توابع انتقالی برای خاک‌های دشت سیستان

نوع مقاله : مقاله کامل علمی پژوهشی

نویسنده

استادیار، گروه مهندسی آب، دانشگاه زابل

چکیده

چکیده
سابقه و هدف: چگالی ظاهری خاک (BD) به دلیل تاثیر مستقیم بر خواص خاک مانند تخلخل، رطوبت در دسترس خاک و هدایت هیدرولیک و اثرات غیرمستقیم آن بر رشد ریشه و عملکرد محصول از اهمیت زیادی برخوردار است. فرآیندهای محیطی و روشهای زراعی باعث می شود که چگالی ظاهری خاک در مکان و زمان بسیار متفاوت باشد. از طرفی اندازه‌گیری آن در مقیاس بزرگ نیازه به وقت زیاد دارد و مرقون به صرفه نمی‌باشد. در نتیجه از روش‌های غیرمستیقم برای اندازه‌گیری چگالی ظاهری هنگام انجام فعالیتهای میدانی در مقیاس بزرگ، از روش‌های غیر مستقیم استفاده می‌شود. یکی از روش غیرمستقیم مقرون به صرفه و صرفه جویی در وقت برای پیش بینی BD استفاده از توابع انتقالی است. هدف از این تحقیق ارزیابی توابع انتقالی موجود به منظور تعیین چگالی ظاهری برای خاک‌های مختلف منطقه سیستان و همچنین واسنجی و ارائه توابع انتقالی جدید برای منطقه مورد مطالعه است.
مواد و روش ها: پس از انجام بررسی منابع مختلف، 64 تابع انتقالی (PTF) مختلف منتشر شده در منابع مختلف برای تخمین چگالی ظاهری انتخاب شدند. این توابع انتقالی به گونه‌ای انتخاب شدند که: 1) دارای مقیاس زمانی گسترده ای باشند (از سال 1957 تا به امروز)، 2) برای مناطق مختلف جهانی، 3) از زمین های با خاک‌های متغیر 4) از انواع روش‌های رگرسیون استفاده کرده و 5) داده-های مورد نیاز آن اندازه گیری متداول مانند شن ، سیلت، رس و کربن آلی خاک باشد. تعداد نمونه‌های خاک برداشت شده در این تحقیق 224 داده بوده است که از 112نقطه در دو عمق 0-15 و 15-30 بدست آمده است. در این تحقیق به منطور ارزیابی توابع انتقالی از سه شاخص میانگین مطلق خطا (ME)، ریشه میانگین مربعات خطا (RMSE) و انحراف استاندارد از خطای پیش بینی شده (SDPE) استفاده شده است.
یافته ها: در بین توابع انتقال موجود روش Benites et al. (2007) با مقدار ME برابر با مقدار 0008/0-، مقدار RMSE ت برابر با 1038/0 و SDPE برابر 1033/0 دارای بهترین نتایج بود. بر اساس مقدار RMSE تابع Yang et al. (2007) با مقدار 1038/0 دارای رتبه 1 و بر اساس SDPE تابع با مقدار بین 0976/0 Leonaviciute (2000) دارای بهترین نتایج بود. برای منطقه مورد مطالعه 5 رابطه ارائه شده شامل رابطه خطی بین BD و کربن آلی (OC)، رابطه خطی بین مجذور OC و BD، رابطه نمایی بین BD و OC، رابطه خطی بین BD و لگاریتم OC و رابطه چندجمله‌ای بین OC و BD ارائه شد.
نتیجه گیری: بر اساس نتایج می‌توان نتیجه‌گیری کرد که که کربن آلی خاک (OC) مهمترین عامل در پیش‌بینی چگالی ظاهری خاک است و با استفاده از تنها کربن آلی خاک می‌توان چگالی ظاهری خاک را دقت مناسبی پیش‌بینی کرد. همچنین می‌توان نتیجه‌گیری کرد که 5 رابطه توسعه داده شده در این تحقیق را می‌توان به منظور بدست آوردن چگالی ظاهری در منطقه مورد مطالعه استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting bulk density using pedotransfer functions for soils in Sistan plain

نویسنده [English]

  • mohammad mahdi chari
water engineerind departmebt, university of zabol
چکیده [English]

Abstract
Background and Objectives:Soil bulk density (BD) is important because of its direct effect on soil properties such as porosity, soil moisture availability, and hydraulic conductivity and its indirect effects on root growth and crop yield. Environmental processes and agronomic practices induce soil bulk density to vary greatly in both space and time. On the other hand, measuring it on a large scale requires a lot of time and is not economical. As a result, indirect methods are used to measure the bulk density when performing large-scale field activities. Pedotransfer Functions (PTFs) have been broadly implemented as indirect cost-effective and time-saving methods in predicting soil bulk density. The purpose of this study is to evaluate the existing Pedotransfer functions in order to determine the bulk density for different soils of Sistan region as well as calibration and provide new Pedotransfer functions for the study area.
Materials and Methods:After reviewing different reference, 64 different Pedotransfer functions (PTFs) published in different sources were selected to estimate the bulk density. These Pedotransfer functions were selected in such a way that 1)in a wide range of time scale (from 1957 up to date), 2) from wide regional, 3) from various soil land uses 4) from all types of regression techniques and 5) only using common and easily measured predictors such as sand, silt, clay and organic carbon. The soil samples collected in this study was 224 data, which was obtained from 112 points at two depths of 0-15 and 15-30. Three indicators of absolute mean error (ME), root mean square error (RMSE) and standard deviation of the predicted error (SDPE) were used to evaluate.
Results:Among the existing Pedotransfer functions, Benites et al. (2007) with ME value equal to -0.0008, RMSE value equal to 0.1038 and SDPE equal to 0.1033 had the best results. Based on the RMSE value of Yang et al. (2007) with a value of 0.1038 with a rank of 1 and based on SDPE function with a value between 0.0976 Leonaviciute (2000) had the best results. For the study area, 5 presented relationships including linear relationship between BD and OC, linear relationship between OC and BD squares, exponential relationship between BD and OC, linear relationship between BD and OC logarithm and polynomial relationship between OC and BD were presented.
Conclusion: Based on the results it can be concluded that soil organic carbon (OC) is the most important factor in predicting soil bulk density and using soil organic carbon alone, soil bulk density can be predicted with relative accuracy. It can also be concluded that the 5 relationships developed in this study can be used to obtain the apparent density in the study area.

کلیدواژه‌ها [English]

  • Bulk density
  • organic carbon
  • Soil texture
  • Pedotransfer function
1.Abdelbaki, A.M. 2016. Evaluation of pedotransfer functions for predicting soil bulk density for U.S. soils. Ain Shams Engineering Journal. 9: 4. 1611-1619.
2.Adams, W.A. 1973. The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. European Journal of Soil Science. 24: 10-17.
3.Alexander, E.B. 1980. Bulk densities of California soils in relation to other soil properties. Soil Science Society of America Journal. 44: 689-692.
4.Al-Qinna, M.I., and Jaber, S.M. 2013. Predicting soil bulk density using advanced pedotransfer functions in an arid environment. Transactions of the ASAE. 56: 963-976.
5.Benites, V.M., Machado, P.L.O.A., Fidalgo, E.C.C., Coelho, M.R., and Madari, B.E. 2007. Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma. 139: 90-97.
6.Bernoux, M., Arrouays, D., Cerri, C., Volkoff, B., and Jolivet, C. 1998. Bulk densities of Brazilian Amazon soils related to other soil properties. Soil Science Society of America Journal.
62: 743-749.
7.Botula, Y.D., Nemes, A., Van Ranst, E., Mafuka, P., De Pue, J., and Cornelis, W.M. 2015. Hierarchical pedotransfer functions to predict bulk density of highlyweathered soils in Central Africa. Soil Science Society of America Journal. 79: 476-486.
8.Calhoun, F.G., Smeck, N.E., Slater, B.L., Bigham, J.M., and Hall, G.F. 2001. Predicting bulk density of Ohio soils from morphology, genetic principles, and laboratory characterization data. Soil Science Society of America Journal.
65: 811-819.
9.Chari, M.M., Poozan, M.T., and Afrasiab, P. 2020. Modeling soil water infiltration variability using scaling. Biosystem Engineering. 196: 56-66.
10.Cienciala, E., Exnerova, Z., Macku, J., and Henzlik, V. 2006. Forest topsoil organic carbon content in Southwest Bohemia region. Journal of Forest Science. 52: 387-398.
11.Curtis, R.O., and Post, B.W. 1964. Estimating bulk density from organic-matter content in some Vermont forest soils. Soil Science Society of America Journal. 28: 285-286.
12.Dam, R.F., Mehdi, B.B., Burgess, M.S.E., Madramootoo, C.A., Mehuys, G.R., and Callum, I.R. 2005. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. Soil and Till Research. 84: 41-53.
13.Delbari, M., Afrasiab, P., Gharabaghi, B., Amiri M., and Salehian, A. 2019. Spatial variability analysis and mapping of soil physical and chemical attributes in a salt-affected soil. Arabian Journal of Geosciences. 12: 68. 1-18.
14.De Vos, B., Van Meirvenne, M., Quataert, P., Deckers, J., and Muys, B. 2005. Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Science Society of America Journal. 69: 500-510.
15.Dexter, A.R. 2004. Soil physical quality part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma. 120: 201-214.
16.Drew, L.A. 1973. Bulk density estimation based on organic matter content of some Minnesota soils. MEinn Forestry Research Notes. 243: 1-4.
17.Eschner, A.R., Jones, B.O., and Moyle, R.C. 1957. Physical Properties of 134 soils in Six Northeastern States. Station Paper No. 89, Forest Service. United States Department of Agriculture, 1-24.
18.Federer, C.A. 1983. Nitrogen mineralization and nitrification: depth variation in four New England forest soils. Soil Science Society of America Journal. 47: 1008-1014.
19.Federer, C.A., Turcotte, D.E., and Smith, C.T. 1993. The organic fraction - bulk density relationship and the expression of nutrient content in forest soils. Canadian Journal of Forest Research. 23: 1026-1032.
20.Grigal, D.F., Brovold, S.L., Nord, W.S., and Ohmann, L.F. 1989. Bulk density of surface soils and peat in the north central United States. Canadian Journal of Forest Research. 69: 895-900.
21.Hallet, S.H., Hollis, J.M., andKeay, C.A. 1998. Derivation and Evaluation of a set of Pedogenically-based Empirical Algorithms for Predicting Bulk Density in British Soils. https://www.landis.org.uk/downloads/downloads/Predicting Bulk Density.pdf.
22.Han, G.Z., Zhang, G.L., Gong, Z.T.,and Wang, G.F. 2012. Pedotransfer functions for estimating soilbulk density in China. Soil Science.177: 158-164.
23.Harrison, A.F., and Bocock, K.L. 1981. Estimation of soil bulk-density from loss-on-ignition values. Journal of Applied Ecology. 18: 919-927.
24.Heuscher, S.A., Brandt, C.C., and Jardine, P.M. 2005. Using soil physical and chemical properties to estimate bulk density. Soil Science Society of America Journal. 69: 51-56.
25.Hollis, J.M., Hannam, J., andBellamy, P.H. 2012. Empirically-derived pedotransfer functions for predicting bulk density in European soils. European Journal of Soil Science. 63: 96-109.
26.Honeysett, J.L., and Ratkowsky, D.A. 1989. The use of ignition loss to estimate bulk density of forest soils. Soil Science. 40: 299-308.
27.Hong, S.Y., Minasny, B., Han, K.H., Kim, Y., and Lee, K. 2013. Predicting and mapping soil available water capacity in Korea. Peer Journal. DOI: 10.7717/peerj.71.
28.Hossain, M.F., Chen, W., and Zhang, Y. 2015. Bulk density of mineral and organic soils in the Canada's arctic and sub-arctic. Information Processing in Agriculture. 2: 183-190.
29.Huntington, T.G., Johnson, C.E., Johnson, A.H., Siccama, T.G., and Ryan, D.F. 1989. Carbon, organic matter, and bulk density relationshipsin a forested spodosol. Soil Science. 148: 380-386.30.Jeffrey, D.W. 1970. A note on the use of ignition loss as a means for the approximate estimation of soil bulk density. Journal of Ecology. 58: 297-299.
31.Kaur, R., Kumar, S., and Gurung, H.P. 2002. A pedo-transfer function (PTF) for estimating soil bulk density from basic soil data and its comparison with existing PTFs. Australian Journal of Soil Research. 40: 5. 847-858.
32.Katuwal, S., Knadel, M., Norgaard, T., Moldrup, P., Greve, M.H., and de Jonge, LW. 2019. Predicting the dry bulk density of soils across Denmark: Comparison of single-parameter, multi-parameter, and vis–NIR based models. Geoderma. 361: 1140-1148.
33.Keller, T., and Hakansson, I. 2010. Estimation of reference bulk density from soil particle size distribution and soil organic matter content. Geoderma. 154: 398-406.
34.Kobal, M., Urbancic, M., Potocic, N., De Vos, B., and Simoncic, P. 2011. Pedotransfer functions for bulk density estimation of forest soils. Journal of Forestry Society of Croatia. 135: 19-27.
35.Leonaviciute, N. 2000. Predictingsoil bulk and particle densities by pedotransfer functions from existing soil data in Lithuania. Geografijos metraštis. 33: 317-330.
36.Makovníková, J., Širáň, M., Houšková, B., Pálka, B., and Jones, A. 2017. Comparison of different models for predicting soil bulk density. Case
study: Slovakian agricultural soils. International Agrophysics. 31: 491-498.
37.Manrique, L.A., and Jones, C.A. 1991. Bulk density of soils in relation to soil physical and chemical properties. Soil Science Society of America Journal.55: 476-481.
38.Men, M.X., Peng, Z.P., Xu, H., and Yu, Z.R. 2008. Investigation on Pedotransfer function for estimating soil bulk density in Hebei province. Chinese Journal Soil Science. 39: 33-37 (In Chinese)
39.Minasny, B., and Hartemink, A.E. 2011. Predicting soil properties in the tropics. Earth Science Reviews. 106: 52-62.
40.Nanko, K., Ugawa, S., Hashimoto, S., Imaya, A., Kobayashi, M., Sakai, H., Ishizuka, S., Miura, S., Tanaka, N., Takahashi, M., and Kaneko, S. 2014. A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash. Geoderma. 213: 36-45.
41.Nasta, P., Palladino, M., Benedetto Sica, B., Pizzolante, A., Trifuoggi, M., Toscanesi, M., Giarra, A., D'Auria, J., Nicodemo, F., Mazzitelli, C., Lazzaro, U., Di Fiore, P., and Romano, N. 2020. Evaluating pedotransfer functions for predicting soil bulk density using hierarchical mapping information in Campania, Italy. Geoderma Regional. 21: 1-13.
42.Nelson, D.W., and Sommers, L.E. 1982. Total carbon, organic carbon and organic matter. P 539-547. In: A.L. Page, R.H. Miller and D.R. Keeney, (eds.), Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Madison.
43.Perie, C., and Ouimet, R. 2008. Organic carbon, organic matter and bulkdensity relationships in boreal forest soils. Canadian Journal Soil Science.88: 315-325.
44.Prevost, M. 2004. Predicting soil properties from organic matter content following mechanical site preparation of forest soils. Soil Science Society of America Journal. 68: 943-949.
45.Rawls, W.J., Nemes, A., and Pachepsky, Ya. 2004. Effect of soil organic carbon on soil hydraulic properties. P 95-114. In: Ya., Pachepsky and W.J., Rawls (eds.), Development of Pedotransfer Functions in Soil Hydrology. Developments in Soil Science vol. 30. Elsevier, New York.
46.Reidy, B., Simo, I., Sills, P., and CreMAEr, R.E. 2016. Pedotransfer functions for Irish soils – estimation of bulk density (ρb) per horizon type. Soil Discussions. 2: 2. 1039-1074.
47.Ruehlmann, J., and Körschens, M. 2009. Calculating the effect of soil organic matter concentration on soil bulk density. Soil Science Society of America Journal. 73: 3. 876-885.
48.Reichert, J.M., Suzuki, L.E.A.S., Reinert, D.J., Horn, R., and Håkansson, I. 2009. Reference bulk density and critical degree-of-compactness for
no-till crop production in subtropical highly weathered soils. Soil and Till Research. 102: 242-254.
49.Saini, G.R. 1966. Organic matter as a measure of bulk density of soil. Nature. 210: 5042. 1295-1296.
50.Sequeira, C.H., Wills, S.A., Seybold, C.A., and West, L.T. 2014. Predicting soil bulk density for incomplete databases. Geoderma. 213: 64-73.
51.Sevastas, S., Siarkos, I., Theodossiou, N., Ifadis, I., and Kaffas, K. 2017. Comparing hydrological models built upon open access and/or measured data in a GIS environment. 6th International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE) and SECOTOX Conference, June 25–30, Thessaloniki, Greece.
52.Sevastas, S., Gasparatos, D., Botsis, D., Siarkos, I., Diamantaras, K.I., and Georgios Bilas, G. 2018. Predicting bulk density using pedotransfer functions for soils in the Upper Anthemountas basin, Greece. Geoderma Regional. 14: 1-14.
53.Shiri, J., Keshavarzi, A., Kisi, O., Karimi, S., and Iturraran-Viveros, U. 2017. Modeling soil bulk density through a complete data scanning procedure: heuristic alternatives. Journal of  Hydrolgy. 549: 592-602.
54.Song, G., Li, L., Pan, G., and Zhang,Q. 2005. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry. 74: 1. 47-62.
55.Tamminen, P., and Starr, M. 1994. Bulk density of forested mineral soils. Silva Fennica. 28: 53-60.
56.Tomasella, J., and Hodnett, M.G. 1998. Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Science.163: 190-202.
57.Tranter, G., Minasny, B., McBratney, A.B., Murphy, B., McKenzie, N.J., Grundy, M., and Brough, D. 2007. Building and testing conceptual and empirical models for predicting soilbulk density. Soil Use Management.23: 437-443.
58.Tremblay, S., Ouimet, R., and Houle, D. 2002. Prediction of organic carbon content in upland forest soils of Quebec. Canada. Canadian Journal of Forest Research. 32: 903-914.
59.Walter, K., Don, A., Tiemeyer, B., and Freibauer, A. 2016. Determiningsoil bulk density for carbon stock calculations: A systematic method comparison. Soil Science Society of America Journal. 80: 579-591.
60.Williams, R.J.B. 1970. Relationships between the composition of soils and physical measurements made on
them. Rothamsted Experimental. Station Report Part 2: 5-35.
61.Wu, H., Guo, Z., and Peng, C. 2003. Distribution and storage of soil organic carbon in China. Global Biogeochemical Cycles. 17: 2. 1048-1060.
62.Yang, Y., Mohammat, A., Feng, J., Zhou, R., and Fang, J. 2007. Storage, patterns and environmental controls
of soil organic carbon in China. Biogeochemistry. 84: 2. 131-141.
63.Zinke, P.J., Stangenberger, A.G., Post, W.M., Emanual, W.R., and Olson, J.S. 1986. Worldwide Organic Soil Carbon and Nitrogen Data. Oak Ridge National Laboratory. Pp: 4-6.