واکنش های بیوشیمیایی برگ و ریشه ذرت به تنش هم زمان شوری و خشکی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته دکتری،گروه علوم خاک، دانشگاه زنجان

2 دانشیار، گروه علوم خاک، دانشگاه تهران

3 دانشیار ، گروه علوم خاک، دانشگاه زنجان

چکیده

سابقه و هدف: مدیریت آبیاری و استفاده از آبیاری بخشی ریشه تحت شرایط شور یکی از راه‌کارهای تولید پایدار در کشاورزی محسوب می‌شود. تولید گونه‌های فعال اکسیژن و تجمع سیتوپلاسمی اسمولیت‌ها یکی از عمومی‌ترین واکنش‌های گیاهی در پاسخ به تنش-های شوری و کم آبی در این شرایط می‌باشد. با این وجود مطالعات اندکی در زمینه ساز و کارهای گیاهی از جمله تغییرات آنزیم‌ها و تنظیم کننده‌های اسمزی سلولی، تحت سطوح یکسان پتانسیل اسمزی و ماتریک بر دو سمت ریشه گیاه در شرایط تنش هم‌زمان شوری و کم آبی و تفاوت آن با شرایط تنش مجزا صورت گرفته است. هدف از این مطالعه بررسی اثر مدیریت آبیاری بخشی بر تغییرات فعالیت آنزیم-های پراکسیداز و کاتالاز و محتوی پرولین در برگ و ریشه تحت مقادیر متفاوت از سطوح یکسان پتانسیل‌های اسمزی و ماتریک، در آبیاری بخشی ریشه ذرت رقم فجر (سینگل کراس260)، می‌باشد.
مواد و روش‌ها: آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار با دو فاکتور شامل، نوع تنش (تنش شوری، تنش‌خشکی و تنش توأم) و سطح پتانسیل (112- ، 119- و 363- کیلوپاسکال)، تحت شرایط گلخانه‌ای انجام شد. بستر کشت در تیمارهای توأم توسط نایلون ضخیم و ناتراوا به دو قسمت برابر برای پخش یکنواخت و مساوی ریشه گیاه تقسیم گردید. در تنش توأم نیمی از ریشه تحت تنش شوری و نیم‌دیگر تحت تنش خشکی (در سطوح متناظر و برابر پتانسیل اسمزی و ماتریک) قرار گرفت. به جهت زهکشی در تیمارهای شوری از تانسیومترهای دست‌ساز استفاده شد. اندازه‌گیری آنزیم‌ کاتالاز، آنزیم پراکسیداز، پروتئین کل و پرولین در دو سمت اندام هوایی و دو سمت ریشه صورت گرفت. هم‌چنین وزن خشک کل و ریشه گیاه ذرت محاسبه گردید.
یافته‌ها: نتایج نشان داد با کاهش سطح پتانسیل، فعالیت آنزیم پراکسیداز و کاتالاز ریشه فقط در تیمارهای خشکی مجزا و بخش خشکی از تیمار توأم، دارای روند مشابه (افزایشی) بود. در بخش خشکی از تیمار توأم نسبت به تیمار خشکی مجزا، با کاهش سطح پتانسیل، فعالیت آنزیم پراکسیداز ریشه 5/18 درصد افزایش و فعالیت آنزیم کاتالاز ریشه 28/6 درصد کاهش یافت. در سطح پتانسیلی 363- کیلوپاسکال، وزن خشک ریشه در تیمار خشکی به‌ترتیب 3/48 و 31 درصد نسبت به تیمار شوری و توأم افزایش یافت. با وجود تغییرات متفاوت در مقدار صفت‌های اندازه‌گیری شده در تنش‌های شوری، خشکی و توأم، در یک پتانسیل یکسان، تفاوت معنی‌داری در وزن خشک کل مشاهده نگردید.
نتیجه‌گیری: گیاه ذرت با وجود سطوح پتانسیل اسمزی و ماتریک یکسان در هر دو سمت ریشه، رفتارهای فیزیولوژیکی و مورفولوژیکی یکسانی را از خود نشان نداد. در سطوح پایین پتانسیل اسمزی، استفاده از سیستم آبیاری بخشی ریشه با آب شور در تیمار توأم، تنش کمتری را نسبت به تیمار مجزای شوری به گیاه وارد خواهد کرد. به نظر می‌رسد تعدیل در واکنش‌های بیوشیمیایی گیاه یکی از علل موفقیت روش آبیاری بخشی ریشه با آب شور باشد. بنابراین در حال حاضر با توجه به کمبود منابع آب‌های شیرین، سیستم آبیاری بخشی ریشه با آب شور به عنوان یک سیستم تقریباً مطلوب نسبت به سایر سیستم‌های آبیاری کامل ریشه با آب شور توصیه می‌شود

کلیدواژه‌ها


عنوان مقاله [English]

Biochemical reactions of maize leave and roots to simultaneous salinity and drought stress

نویسندگان [English]

  • saeedeh marzvan 1
  • mohammad hosein mohammadi 2
  • farid shekari 3
1 Graduated Ph.D. student of Agricultural College, Zanjan University
2 associate professor of agricultural and natural resources campus of tehran
3 Associate Professor, Faculty of Agriculture, University of Zanjan
چکیده [English]

Background and objectives: Irrigation management and use of partial root irrigation under saline conditions is one of the sustainable production strategies in agriculture. The production of reactive oxygen species and the cytoplasmic accumulation of smolites is one of the most common plant reactions to salinity stress and dehydration under these conditions. However, few studies have been performed on the variation of enzymes and cellular osmotic regulators in similar salinity and water stresses under the same osmotic and matric potential levels on the two sides of the root and its differences with separate stress conditions. The aim of this study was investigated the effect of partial irrigation management on activity of peroxidase and catalase enzymes, proline content variation under different levels of similar osmotic and matric potentials, in leaves and roots of maize in Fajr cultivar (KSC 260), in greenhouse conditions.
Materials and Methods: A factorial experiment with two factors; stress type (salinity, drought and mix stress) and potential levels in three values (-112, -191, and -363 KPa) was performed on the basis of completely randomized design with 3 replications. The culture media was subdivided into two equal sections by nylon for uniform and same distribution of the root in the mixed treatments. At mixed stress, half of the roots were subjected to salinity stress and the other half to drought stress (at corresponding levels equal to the osmotic and matrix potentials). Handmade tensiometers were used for drainage in salinity treatments. Catalase, peroxidase, total protein and proline were measured in both shoots and roots. Also, total dry weight and root of corn plant were calculated.
The results showed that with decreasing the potential level, the activity of root peroxidase and catalase had a similar trend (increase) only in individual drought treatments and the drought part of the mixed treatment. In the drought part of the mixed treatment compared to the individual drought treatment, with decreasing the potential level, the activity of root peroxidase increased by 18.5% and the activity of root catalase decreased by 6.28%. At the potential level of -363 bar, the dry weight of roots in drought treatment, compared to salinity and mixed treatment increased by 48.3% and 31%, respectively. Despite different changes in the amount of traits measured in salinity, drought and mixed stresses, at the same potential, no significant difference in total dry weight was observed.
Conclusion: Maize plant under the same osmotic and matric potential levels exhibits different physiological and morphological behaviors. The use of partial root irrigation system with saline water in mix treatment will cause less stress than salinity treatment at low levels of osmotic potential to the plant. It seems, modification of plant biochemical reactions is one of the successes of root irrigation method with saline water. Therefore, due to the scarcity of freshwater resources, partial root irrigation with saline water is recommended as a nearly desirable system compared to other full root irrigation systems.

کلیدواژه‌ها [English]

  • osmotic potential
  • tensiometer
  • soil salinity
  • secondary metabolites
 1.AbdElgawad, H., Zinta, G., Hegab, M.M., Pandey, R., Asard, H., and Abuelsoud, W. 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science. 276: 1-11.
2.Aebi, H. 1984. Catalase in vitro.Methods in Enzymology. Academic Press. 105: 121-126.3.Ajithkumar, I.P., and Panneerselvam, R. 2014. ROS scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrense roth under drought stress. Cell biochemistry and Biophysics. 68: 587-595.
4.Bates, L.S., Waldren, R.P., and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39: 1. 205-207.
5.Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254.
6.Bundig, C., Vu, T.H., Meise, P., Seddig, S., Schum, A., and Winkelmann, T.2016. Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L.) as revealed by an in vitro screening: role of proline, osmotic adjustment and drought response in pot trials. Journal of Agronomy and Crop Science. 203: 206-218.
7.Chance, B., and Maehly, A. 1955. Assay of catalases and peroxidases. Methods in Enzymology. 2: 764-775.
8.Ciçek, N., and Çakirlar, H. 2002. The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology. 28: 1-2. 66-74.
9.Dane, J.H., and Hopmans, J.W. 2002. Methods of Soil Analysis: Part 4 Physical Methods. Soil Science Society of America, Inc, Madison, Wisconsin, USA.
10.de Cássia Alves, R., de Medeiros, A.S., Nicolau, M.C.M., Neto, A.P., Lima, L.W., Tezotto, T., and Gratão, P.L. 2018. The partial root-zone saline irrigation system and antioxidant responses in tomato plants. Plant Physiology and Biochemistry. 127: 366-379.
11.Fariduddin, Q., Mir, B.A., and Ahmad, A. 2012. Physiological and biochemical traits as tools to screen sensitive and resistant varieties of tomatoes exposed to salt stress. Brazilian Journal of Plant Physiology. 24: 4. 281-292.
12.Gupta, B., and Huang, B. 2014. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics. 2014: 1-18.
13.Hasana, R., and Miyake, H. 2017. Salinity Stress Alters Nutrient Uptake and Causes the Damage of Root and Leaf Anatomy in Maize. KnE Life Sciences. 3: 4. 219-225.
14.Hmidi, D., Abdelly, C., Ashraf, M., and Messedi, D. 2018. Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. Physiology and molecular biology of plants: International Journal of Functional Plant Biology. 24: 6. 1017-1033.
15.Hosseini Salkade, Gh., and Nasr Abadi, D. 2012. Proteomic Analysis of Root and Leaf in Rice under Salinity
Stress. Journal of Crop Biotechnology. 1: 1. 1-11. (In Persian)
16.Júnior, D.F., Gaion, L.A., Júnior, G.S., Santos, D.M.M., and Carvalho, R.F. 2018. Drought-induced proline synthesis depends on root-to-shoot communication mediated by light perception. Acta Physiologiae Plantarum. 40: 1. 1-15.
17.Martorello, A.S.Q., Gyenge, J.E., and Fernández, M.E. 2017. Morpho-physiological response to vertically heterogeneous soil salinity of two glycophyte woody taxa, Salix matsudana × S. alba and Eucalyptus camaldulensis Dehnh. Plant Soil.
416: 1-2. 343-360.
18.Marzvan, S., Mohammadi, M.H., and Shekari, F. 2018. The Effect of Equal Osmotic and Matric Potential on Water Uptake and Yield of Corn in Complete and Partial Root Irrigation System. Iranian Journal of Soil and Water Research. 50: 4. 793-806. (In Persian)
19.Mazhoudi, S., Chaoui, A., Ghorbal, M.H., and El Ferjani, E. 1997. Response of antioxidant enzymes to excess
copper in tomato (Lycopersicon esculentum, Mill.). Plant Science Journal. 127: 2. 129-137.
20.McNeil, S.D., Nuccio, M.L., and Hanson, A.D. 1999. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiology. 120: 4. 945-949.
21.Meskini-Vishkaee, F., Mohammadi, M.H., Neyshabouri, M.R., and Shekari, F. 2015. Evaluation of canola chlorophyll index and leaf nitrogen under wide range of soil moisture.International Agrophysics. 29: 1. 83-90.
22.Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science. 9: 10. 490-498.
23.Molinari, H.B.C., Marur, C.J., Daros, E., de Campos, M.K.F., de Carvalho, J., Bespalhok, J.C., Pereira, L.F.P., and Vieira, L.G.E. 2007. Evaluation of the stress-inducible production of proline in transgenic sugarcane Physiol. Mol.
Biol. Plants (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum. 130: 218-229.
24.Munns, R., and Gilliham, M. 2015. Salinity tolerance of crops–what is the cost? New Phytologist. 208: 3. 668-673.
25.Murshed, R., Lopez-Lauri, F., and Sallanon, H. 2014. Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage. Physiology and molecular biology of plants: International Journal of Functional Plant Biology. 20: 15-29.
26.Neumann, P.M. 1995. Inhibition of root growth by salinity stress: Toxicity or an adaptive biophysical response?
P 299-304. Proceeding of fourth international Symposium in structure and function of roots. June, 20-26.
27.Parida, A.K., and Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Ecotoxicology and Environmental Safety. 60: 3. 324-349.
28.Redwan, M., Spinelli, F., Marti, L., Bazihizina, N., Azzarello, E., Mancuso, S., and Masi, E. 2017. Investigation of root signaling under heterogeneous salt stress: A case study for Cucumis sativus L. Environmental and Experimental Botany. 143: 20-28.
29.Seki, M., Umezawa, T., Urano, K., and Shinozaki, K. 2007. Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology. 10: 3. 296-302.
30.Sewelam, N., Kazan, K., and Schenk, P.M. 2016. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. Frontiers in Plant Science. 7: 187-187.
31.Singh, T.N., Paleg, I.G., and Aspinall, D. 1973. Stress metabolism I. Nitrogen metabolism and growth in the barley plant during water stress. Australian Journal of Biological Sciences.26: 1. 45-56.
32.Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., and Savoure, A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany. 115: 3. 433-447.
33.Sofo, A., Scopa, A., Nuzzaci, M., and Vitti, A. 2015. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences. 16: 6. 13561-13578.
34.Stolfa, I., Maronić, D.Š., Pfeiffer, T.Ž., and Lončarić, Z. 2016. Glutathione and Related Enzymes in Response to Abiotic Stress.In Redox State as a Central Regulator of Plant- Cell Stress Responses. Springer International Publishing. Pp: 183-211.
35.Tanji, K.K., and Kielen, N.C. 2002. Agricultural drainage water management in arid and semi-arid areas. FAO. Foodand Agriculture Organization of the United Nations, Rome, Italy. 186p.
36.Wang, Q., Huo, Z., Zhang, L., Wang, J., and Zhao, Y. 2016. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China. Agricultural Water Management. 163: 125-138.
37.Weimberg, R., Lerner, H.R., and Poljakoff‐Mayber, A. 1982. A relationship between potassium and proline accumulation in salt‐stressed Sorghum bicolor. Physiologia Plantarum. 55: 1. 5-10.
38.Yasar, F., Uzal, O., and Yasar, O. 2016. Antioxidant enzyme activities and lipid peroxidation amount of pea varieties (pisumsativum sp. arvense l.) under salt stress. Fresenius Environmental Bulletin. 25: 37-42.
39.Yousefi, M., Tabatabaei, S.J., Hajilu, J., and Mahna, N. 2013. Effect of non-uniform salinity on part of root on photosynthesis intensity and nutrient concentration of strawberry Cv. Kamarosa. Journal of Horticultural Science. 27: 2. 178-184. (In Persian)
40.Zhang, H., Han, B., Wang, T., Chen, S., Li, H., Zhang, Y., and Dai, S. 2012. Mechanisms of Plant Salt Response: Insights from Proteomics. Journal of Proteome Research. 11: 49-67.
41.Zhang, J., and Kirkham, M.B.1994. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant & Cell Physiology.5: 5. 785-791.