هدررفت خاک، کربن آلی، فسفر و پتاسیم در اثر فرسایش بین‌شیاری متأثر از سرعت باد و سطوح مختلف خاکپوش بقایای گیاهی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه خاکشناسی دانشگاه شهید باهنر کرمان

2 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

چکیده

سابقه و هدف: فرسایش بین‌شیاری یکی از انواع مهم فرسایش خاک در اراضی کشاورزی است که باعث افت کیفی و هدررفت کمی خاک می‌شود. هرچند پژوهش‌های متعددی در زمینه فرسایش بین‌شیاری انجام شده، مطالعات بسیار کمی در مورد هدررفت خاک، مواد آلی و عناصر غذایی در اثر فرسایش بین‌شیاری در شرایط متأثر از باد صورت گرفته است. پژوهش حاضر با هدف بررسی تأثیر درصدهای مختلف خاکپوش کاه و کلش گندم در تقابل با سرعت‌های مختلف باد بر هدررفت خاک، کربن آلی، فسفر و پتاسیم در اثر فرسایش بین‌شیاری روی دو خاک زراعی مختلف انجام شد.
مواد و روش‌ها: آزمایش به‌صورت فاکتوریل در قالب طرح کاملا تصادفی و با اعمال سه فاکتور انجام شد. دو نمونه خاک زراعی با حداکثر اندازه ذرات 2 و 75/4 میلی‌متر، در سرعت‌های مختلف باد (صفر، 6 و 12 متر بر ثانیه) و چهار سطح خاکپوش کاه و کلش گندم شامل صفر، 30، 60 و 90 درصد (معادل 800، 1650 و 3300 کیلوگرم در هکتار)، هر یک در سه تکرار مورد آزمایش شبیه‌سازی باران و باد قرار گرفت. به این منظور، باران با شدت ثابت 40 میلی‌متر در ساعت به مدت 40 دقیقه ایجاد و میزان هدررفت خاک، کربن آلی، فسفر قابل استفاده و پتاسیم قابل جذب اندازه‌گیری شد. در نهایت، ارتباط شدت فرسایش بین‌شیاری متأثر از باد با هدررفت کربن آلی و عناصر غذایی بررسی شد.
یافته‌ها: نتایج نشان داد که هدررفت خاک، کربن آلی، فسفر قابل استفاده و پتاسیم قابل جذب در اثر فرسایش بین‌شیاری در خاک‌های مورد مطالعه به‌ترتیب بین 1/8 تا 9/134، 02/0 تا 28/1، 3-10×03/0 تا 3-10×45/1 و 007/0 تا 160/0 میلی‌گرم بر متر مربع در ثانیه متغیر بود. با افزایش درصد خاکپوش، میزان هدررفت خاک، کربن آلی و عناصر غذایی به‌طور معنی‌داری کاهش یافت. در مقابل، افزایش سرعت باد، باعث افزایش معنی‌دار هدررفت خاک و عناصر غذایی شد. همچنین، هدررفت خاک، کربن آلی و عناصر غذایی در شرایط عدم وزش باد و عدم وجود خاکپوش، در خاک با خاکدانه‌های درشت‌تر کمتر از خاک با ذرات ریزتر بود. در هر دو خاک مورد مطالعه، هدررفت کربن آلی بیشتر از هدررفت فسفر و پتاسیم بود. ارتباط هدررفت خاک با هدررفت کربن آلی و نیز با هدررفت فسفر، قوی‌تر از ارتباط با هدررفت پتاسیم بود.
نتیجه‌گیری: یافته‌های این پژوهش نشان داد که وزش بادهای فرساینده در زمان وقوع بارش باران، می‌تواند هدررفت خاک، کربن آلی، فسفر قابل استفاده و پتاسیم قابل جذب در اثر فرسایش بین‌شیاری را افزایش دهد. از یک طرف، وزش باد باعث افزایش قدرت جریان رواناب می‌شود، از طرف دیگر وجود خاکپوش با ایجاد زبری در سطح و نیز محافظت از برخورد مستقیم قطرات باران به سطح خاک، میزان هدررفت را کاهش می‌دهد.. بر اساس یافته‌های این پژوهش، بهترین میزان خاکپوش کاه و کلش گندم برای کنترل هدررفت خاک در اثر فرسایش بین‌شیاری برابر با 60 درصد تعیین شد. لذا حفظ و یا ایجاد این میزان پوشش سطحی در اراضی کشاورزی می‌تواند از هدررفت خاک، کربن آلی و عناصر غذایی در اثر فرسایش بین‌شیاری تا حد زیادی جلوگیری کند.

کلیدواژه‌ها


عنوان مقاله [English]

Losses of soil, organic carbon, phosphorous and potassium due to interrill erosion influenced by different levels of wind velocity and plant residue coverage

نویسندگان [English]

  • Sanaz Poormirkamali 1
  • Majid Mahmoodabadi 2
1 Department of Soil Science, Shahid Bahonar University of Kerman
2 Department of Soil Science, Agriculture Faculty, Shahid Bahonar University of Kerman
چکیده [English]

Background and Objectives: Interrill erosion is one of the most important forms of soil erosion in agricultural lands let to decline in the quality and loss of soil. Despite many studies have been done on interrill erosion, few studies have been conducted on the losses of soil, organic carbon (OC) and nutrients due to wind-driven interrill erosion. Therefore, the purpose of this study is to investigate the effects of different percentages of wheat straw coverage and wind velocities on the losses of soil, OC, phosphorus (P) and potassium (K) following to wind-driven interrill erosion on two contrasting cropland soil samples.
Materials and Methods: the experiment was conducted as factorial in a completely randomized design using three factors. Two soil samples with maximum aggregate sizes of 2 and 4.75 mm covered by four levels of wheat straw mulch including 0 (as control), 30, 60, 90% (equal to 800, 1650, and 3300 kg ha-1) were examined at different wind velocities (0, 6 and 12 m s-1), each at three replicates under simulated rain and wind. Therefore, a constant intensity rainfall of 40 mm/h was generated for 40 minutes and the amount of soil losses, as well as OC, P and K losses were measured. Finally, the relationship of wind-driven interrill erosion rate with the OC, P, and K losses was evaluated.
Results: The results showed that the loss of soil, OC, P, and K In the studied soils ranged from 8.1 to 134.9, 0.02 to 1.28, 0.03×10-3 to 1.45×10-3, and 0.007 to 0.160 mg m-2 s-1, respectively. With increasing the percentage of mulch, the losses were reduced significantly as nonlinear trends. In contrast, higher wind velocities increased the losses of soil and the nutrients. In the absence of wind and coverage, fewer losses were found in the soil containing coarser aggregates. The OC loss in the soils was higher than the P and K losses. The relationship of soil loss with OC and P losses was closer than that with the K loss.
Conclusion: The findings of this study showed that blowing of erosive winds during a rainfall can intensify the loss of soil and nutrients. However, wind velocity enhances stream power; the presence of surface mulch can reduce the losses by enhancing the surface roughness and conserving the soil surface from the direct impact of raindrops. Moreover, the presence of larger aggregates at the soil surface has an effective influence on the interrill erosion control. Based on the findings of this study, 60% was determined as the optimal coverage of wheat straw to control soil loss due to interrill erosion. Therefore, keeping this amount of plant residue coverage on agricultural soils can considerably constrain the losses of soil and nutrients due to interrill erosion.

کلیدواژه‌ها [English]

  • Wheat straw
  • Wind and rain simulator
  • Interrill erosion
  • Wind erosivity
  • Soil organic carbon
 1.AbdElgawad, H., Zinta, G., Hegab, M.M., Pandey, R., Asard, H., and Abuelsoud, W. 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science. 276: 1-11.
2.Aebi, H. 1984. Catalase in vitro.Methods in Enzymology. Academic Press. 105: 121-126. 
3.Ajithkumar, I.P., and Panneerselvam, R. 2014. ROS scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrense roth under drought stress. Cell biochemistry and Biophysics. 68: 587-595.
4.Bates, L.S., Waldren, R.P., and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39: 1. 205-207.
5.Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254.
6.Bundig, C., Vu, T.H., Meise, P., Seddig, S., Schum, A., and Winkelmann, T.2016. Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L.) as revealed by an in vitro screening: role of proline, osmotic adjustment and drought response in pot trials. Journal of Agronomy and Crop Science. 203: 206-218.
7.Chance, B., and Maehly, A. 1955. Assay of catalases and peroxidases. Methods in Enzymology. 2: 764-775.
8.Ciçek, N., and Çakirlar, H. 2002. The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology. 28: 1-2. 66-74.
9.Dane, J.H., and Hopmans, J.W. 2002. Methods of Soil Analysis: Part 4 Physical Methods. Soil Science Society of America, Inc, Madison, Wisconsin, USA.
10.de Cássia Alves, R., de Medeiros, A.S., Nicolau, M.C.M., Neto, A.P., Lima, L.W., Tezotto, T., and Gratão, P.L. 2018. The partial root-zone saline irrigation system and antioxidant responses in tomato plants. Plant Physiology and Biochemistry. 127: 366-379.
11.Fariduddin, Q., Mir, B.A., and Ahmad, A. 2012. Physiological and biochemical traits as tools to screen sensitive and resistant varieties of tomatoes exposed to salt stress. Brazilian Journal of Plant Physiology. 24: 4. 281-292.
12.Gupta, B., and Huang, B. 2014. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics. 2014: 1-18.
13.Hasana, R., and Miyake, H. 2017. Salinity Stress Alters Nutrient Uptake and Causes the Damage of Root and Leaf Anatomy in Maize. KnE Life Sciences. 3: 4. 219-225.
14.Hmidi, D., Abdelly, C., Ashraf, M., and Messedi, D. 2018. Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. Physiology and molecular biology of plants: International Journal of Functional Plant Biology. 24: 6. 1017-1033.
15.Hosseini Salkade, Gh., and Nasr Abadi, D. 2012. Proteomic Analysis of Root and Leaf in Rice under Salinity Stress. Journal of Crop Biotechnology. 1: 1. 1-11. (In Persian)
16.Júnior, D.F., Gaion, L.A., Júnior, G.S., Santos, D.M.M., and Carvalho, R.F. 2018. Drought-induced proline synthesis depends on root-to-shoot communication mediated by light perception. Acta Physiologiae Plantarum. 40: 1. 1-15.
17.Martorello, A.S.Q., Gyenge, J.E., and Fernández, M.E. 2017. Morpho-physiological response to vertically heterogeneous soil salinity of two glycophyte woody taxa, Salix matsudana × S. alba and Eucalyptus camaldulensis Dehnh. Plant Soil.
416: 1-2. 343-360.
18.Marzvan, S., Mohammadi, M.H., and Shekari, F. 2018. The Effect of Equal Osmotic and Matric Potential on Water Uptake and Yield of Corn in Complete and Partial Root Irrigation System. Iranian Journal of Soil and Water Research. 50: 4. 793-806. (In Persian)
19.Mazhoudi, S., Chaoui, A., Ghorbal, M.H., and El Ferjani, E. 1997. Response of antioxidant enzymes to excess
copper in tomato (Lycopersicon esculentum, Mill.). Plant Science Journal. 127: 2. 129-137.
20.McNeil, S.D., Nuccio, M.L., and Hanson, A.D. 1999. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiology. 120: 4. 945-949.
21.Meskini-Vishkaee, F., Mohammadi, M.H., Neyshabouri, M.R., and Shekari, F. 2015. Evaluation of canola chlorophyll index and leaf nitrogen under wide range of soil moisture.International Agrophysics. 29: 1. 83-90.
22.Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science. 9: 10. 490-498.
23.Molinari, H.B.C., Marur, C.J., Daros, E., de Campos, M.K.F., de Carvalho, J., Bespalhok, J.C., Pereira, L.F.P., and Vieira, L.G.E. 2007. Evaluation of the stress-inducible production of proline in transgenic sugarcane Physiol. Mol.
Biol. Plants (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum. 130: 218-229.
24.Munns, R., and Gilliham, M. 2015. Salinity tolerance of crops–what is the cost? New Phytologist. 208: 3. 668-673.
25.Murshed, R., Lopez-Lauri, F., and Sallanon, H. 2014. Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage. Physiology and molecular biology of plants: International Journal of Functional Plant Biology. 20: 15-29.
26.Neumann, P.M. 1995. Inhibition ofroot growth by salinity stress: Toxicity or an adaptive biophysical response?
P 299-304. Proceeding of fourth international Symposium in structure and function of roots. June, 20-26.
27.Parida, A.K., and Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Ecotoxicology and Environmental Safety. 60: 3. 324-349.
28.Redwan, M., Spinelli, F., Marti, L., Bazihizina, N., Azzarello, E., Mancuso, S., and Masi, E. 2017. Investigation of root signaling under heterogeneous salt stress: A case study for Cucumis sativus L. Environmental and Experimental Botany. 143: 20-28.
29.Seki, M., Umezawa, T., Urano, K., and Shinozaki, K. 2007. Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology. 10: 3. 296-302.
30.Sewelam, N., Kazan, K., and Schenk, P.M. 2016. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. Frontiers in Plant Science. 7: 187-187.
31.Singh, T.N., Paleg, I.G., and Aspinall, D. 1973. Stress metabolism I. Nitrogen metabolism and growth in the barley plant during water stress. Australian Journal of Biological Sciences.26: 1. 45-56.
32.Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., and Savoure, A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany. 115: 3. 433-447.
33.Sofo, A., Scopa, A., Nuzzaci, M., and Vitti, A. 2015. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences. 16: 6. 13561-13578.
34.Stolfa, I., Maronić, D.Š., Pfeiffer, T.Ž., and Lončarić, Z. 2016. Glutathioneand Related Enzymes in Response to Abiotic Stress.In Redox State as a Central Regulator of Plant- CellStress Responses. Springer International Publishing. Pp: 183-211.
35.Tanji, K.K., and Kielen, N.C. 2002. Agricultural drainage water management in arid and semi-arid areas. FAO. Foodand Agriculture Organization of the United Nations, Rome, Italy. 186p.
36.Wang, Q., Huo, Z., Zhang, L., Wang, J., and Zhao, Y. 2016. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China. Agricultural Water Management. 163: 125-138.
37.Weimberg, R., Lerner, H.R., and Poljakoff‐Mayber, A. 1982. A relationship between potassium and proline accumulation in salt‐stressed Sorghum bicolor. Physiologia Plantarum. 55: 1. 5-10.
38.Yasar, F., Uzal, O., and Yasar, O. 2016. Antioxidant enzyme activities and lipid peroxidation amount of pea varieties (pisumsativum sp. arvense l.) under salt stress. Fresenius Environmental Bulletin. 25: 37-42.
39.Yousefi, M., Tabatabaei, S.J., Hajilu, J., and Mahna, N. 2013. Effect of non-uniform salinity on part of root on photosynthesis intensity and nutrient concentration of strawberry Cv. Kamarosa. Journal of Horticultural Science. 27: 2. 178-184. (In Persian)
40.Zhang, H., Han, B., Wang, T., Chen, S., Li, H., Zhang, Y., and Dai, S. 2012. Mechanisms of Plant Salt Response: Insights from Proteomics. Journal of Proteome Research. 11: 49-67.
41.Zhang, J., and Kirkham, M.B.1994. Drought-stress-induced changesin activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant & Cell Physiology.5: 5. 785-791.