ارزیابی آلودگی و منشأ برخی عناصر سنگین در خاک‌های کشاورزی جنوب سبزوار، شمال شرق ایران

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد ، گروه علوم خاک، دانشگاه فردوسی مشهد،

2 استاد،گروه علوم خاک، دانشگاه فردوسی مشهد،

3 دانش‌آموخته دکتری ،گروه علوم خاک، دانشگاه فردوسی مشهد

4 استاد، گروه علوم خاک، دانشگاه فردوسی مشهد،

چکیده

سابقه و هدف: فلزات سنگین به‌طور طبیعی از فرایندهای خاک‌سازی در طی هوادیدگی مواد مادری، یا از طریق فعالیت‌های انسانی وارد محیط خاک ‌می‌شوند. تعیین منبع آلودگی فلزات سنگین در خاک کشاورزی برای مدیریت بهتر آن‌ها ضروری است. هدف این مطالعه بررسی وضعیت آلودگی خاک به عناصر سنگین انتخابی و تعیین منشأ آنها در بخشی از اراضی کشاورزی جنوب سبزوار بود.
مواد و روش‌ها: منطقه مورد مطالعه در امتداد کمربند افیولیتی در جنوب شهرستان سبزوار، شمال شرقی ایران واقع شده است. نمونه خاک‌های سطحی از عمق صفر تا 20 سانتی متر از اراضی زیر کشت تا فاصله 2 کیلومتری از جاده اصلی جمع آوری شد. همچنین سه خاکرخ در فواصل 1 کیلومتری مطالعه شد و تعداد 5 نمونه از اعماق صفر تا 20، 40-20، 60-40، 80-60، 100-80 سانتی‌متری هر خاکرخ برداشت شد. غلظت کل عناصر آلومینیوم، آهن، منگنز، نیکل، کروم، روی، مس، سرب و کادمیم توسط دستگاه ICP-OES اندازه گیری شد. شاخص‌های آلودگی برای فلزات سنگین آهن، منگنز، نیکل، کروم، روی، مس، سرب و کادمیم محاسبه شد. تکنیک-های آماری چند متغیره برای ارزیابی منشأ عناصر سنگین استفاده شد.
یافته‌ها: میانگین غلظت نیکل، کروم، منگنز، مس و روی در خاک سطحی به ترتیب 2/306، 5/217، 4/781، 3/268 و 2/302 میلی‌گرم در کیلوگرم در مقادیر بالاتر از استانداردهای خاک کشاورزی اتحادیه اروپا(EU) ، سازمان بهداشت جهانی (WHO) و استاندارد حفاظت محیط زیست آمریکا (USEPA) بود. کادمیوم با میانگین غلظت 7/2 میلی‌گرم در کیلوگرم بالاتر از استانداردهای WHO وUSEPA و سرب نیز با میانگین 8/18 میلی‌گرم در کیلوگرم بالاتر از استاندارد USEPA بود. براساس ضرایب همبستگی پیرسون‌، نیکل همبستگی مثبت و معنی‌داری با کروم (01/0 (P < نشان داد. همبستگی مثبت (05/0 (P < بین سرب و کادمیم و همچنین همبستگی مثبت و معنی‌دار(01/0 (P < مس و روی می‌تواند نشان‌دهنده منبع مشترک این عناصر ‌باشد. بر اساس تجزیه و تحلیل مؤلفه اصلی‌(PCA) ، سه مولفه، 97/76 درصد از کل واریانس را به خود اختصاص دادند .با توجه به شاخص‌‌های آلودگی (فاکتور غنی-شدگی و شاخص زمین‌انباشتگی)، کادمیم، مس و نیکل در محدوده آلودگی شدید هستند. شاخص خطرات اکولوژیک بالقوه نیز نشان داد که کادمیم و مس مهم‌ترین آلاینده‌های مسئول مخاطرات اکولوژیک می‌باشند.
نتیجه‌گیری: نتایج همبستگی و تحلیل‌های آماری چند متغیره، طبقه‌بندی عناصر سنگین مورد بررسی را در سه گروه،Cr) Mn, وNi)، Zn) و (Cu و (Pb و Cd) نشان داد که می‌تواند دلیلی بر منشأ یکسان آن‌ها باشد. مقادیر بالای کادمیم و نیکل در خاک، براساس شاخص غنی‌شدگی، زمین‌انباشت و خطرات اکولوژیک، به ترتیب به کاربردهای طولانی مدت و گسترده کودهای شیمیایی، انتشارات ترافیکی و مواد مادری افیولیتی نسبت داده شد؛ در حالی که مقدار بالای این شاخص‌ها برای مس به منشأ دو گانه انسان‌زاد و زمین‌زاد ارتباط داده شد. در صورت عدم رعایت ملاحظات زیست‌محیطی، مانند نبود اعمال مدیریت صحیح در منطقه، در دراز مدت صدمات جبران‌ناپذیری به چرخه محیط زیست وارد خواهد شد. لذا، ضروری به نظر می‌رسد که تصمیماتی در راستای کاهش این آلودگی‌ها و نیز در صورت امکان حذف آن‌ها اتخاذ گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Pollution Assessment and Source of Selected Heavy Metals in Agricultural Soils, Southern Sabzevar, Northeastern Iran

نویسندگان [English]

  • Arezoo Ghasemzade 1
  • Alireza Karimi 2
  • Atefeh Ziyaee 3
  • Amir Fotovat 4
1 Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad
2
3 Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad
4
چکیده [English]

Background and objectives: Heavy metals enter naturally in the soil environment from the pedogenic processes during weathering of parent materials or through a variety of human activities. Determining the source of heavy metal in agricultural soil is necessary to management the soil pollution. This study aimed to investigate soil pollution by selected heavy metals and determine their sources in agricultural soils in Southern Sabzevar.
Material and Method: The study area is located in the piedmont of ophiolotic belt in the South of Sabzevar city, Northeastern Iran. Surface soil samples from 0 to 20 cm depth of cultivated lands were regularly collected up to 2 km from the main road. Also, three profiles were studied at a distance of 1 km intervals. Five samples were taken from the depths of 0-20, 20-40, 40-60, 60-80, 80-100 cm. The total concentrations of Al, Fe, Mn, Ni, Cr, Zn, Cu, Pb, and Cd were measured by Inductively Coupled Plasma (ICP-OES). In this study, Pollution indices were calculated for the studied heavy metals. Multivariate statistical techniques were also applied to assess the sources of the heavy metals using SPSS software V 24.
Result: Mean concentrations of Ni, Cr, Mn, Cu, and Zn were 306.2, 217.5, 781.4, 268.3, and 302.2 mg kg-1 was found to be higher than EU, WHO, and USEPA standards. Cadmium with an average concentration of 2.7 mg kg-1 was higher than WHO and USEPA standards and Pb with an average concentration of 18.8 mg kg-1 was higher than USEPA standards. Based on Pearson correlation coefficients, statistically-significant positive correlations (P < 0.01) were found between Ni and Cr, Cu and Zn (P < 0.01), and also between Pb and Cd (P < 0.05). In addition, based on principal component analysis (PCA), three components accounting for 76.97% of the total variance explained. The first component contained Fe, Mn, Cr, and Ni, the second and third components included Pb, Cd and Cu, Zn, respectively. According to the pollution indices (enrichment factor and geoacumulation index), Cd, Cu, and Ni are important pollutants, with the highest EF and Igeo index among the analyzed elements. Potential ecological risk factor (Er) also showed that Cd, Cu, and Ni are important pollutants responsible for ecological threats.

Conclusion: According to the results of correlation and multivariate statistical analyses the heavy metals were classified in three groups of (Mn, Cr, Ni), (Cu, Zn) and (Pb, Cd), which indicates their similar sources. Elevated amounts of Cd and Ni in the soil, based on EF, Igeo, and Er, were attributed to the long-term and extended applications of the chemical fertilizers and traffic emission for Cd and ophiolitic parent material for Ni. In comparison, the elevated amount of indexes for Cu were associated with both anthropogenic and geogenic sources. Hence, control of elements from geogenic and anthropogenic sources into the soil seems necessary. In case of non-observing environmental considerations such as excreting proper management in the region, The environmental cycle will face irreparable damage in the long-term; therefore, it seems necessary to make decisions to reduce these pollutants and, if possible to eliminate them.

کلیدواژه‌ها [English]

  • Soil pollution
  • Multivariate analysis
  • Agricultural soil
  • Ecological risk index
  • Ultramafic rocks
1.Abbaszadeh, F., Jalali, V.R., and Jafari, A. 2017. Investigating the source of some heavy metals using cluster and factor analysis techniques in soils of Hormoz Island. Journal of Applied Soil Research. 6: 13-24. (In Persian)
2.Abrahim, G.M., and Parker, R.J. 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment. 136: 227-38.
3.Acosta, J.A., Faz, A., Martínez Martínez, S., and Arocena, J.M. 2011. Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment. Applied Geochemistry.26: 405-414.
4.Akbari, S., Karimi, A., Lakzian, A., Fotovat, A. 2015. Variations of Ni, Cr, and Mn concentration in soils formed along a toposequence of ultrabasic rocks in western Mashhad. Journal of Water and Soil. 29: 477-488. (In Persian)
5.Alloway, B. 2010. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability, 3rd ed. Springer publications, 614p.
6.Antibachi, D., Kelepertzis, E., and Kelepertsis, A. 2012. Heavy metals in agricultural soils of the Mouriki-Thiva area (central Greece) and environmental impact implications. Soil and Sediment Contamination. 21: 434-450.
7.Atafar, Z., Mesdaghinia, A., Nouri,J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., and Mahvi, A.H. 2010. Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment. 83: 1-4.
8.Azimzade, B., and Khademi, H.2013. Estimation of background concentration of selected heavy metals for pollution assessment of surface soils of Mazandaran province, Iran. Journal of Water and Soil. Pp: 548-559.(In Persian)
9.Blaster, P., Zimmermann, S., Luster,J., and Shotyk, W. 2000. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Science of the Total Environment. 249: 257-280.
10.Brūmelis, G., Lapiņa, L., Nikodemus, O., and Tabors, G. 2002. Use of the O horizon of forest soils in monitoring metal deposition in Latvia. Water Air Soil Pollution. 135: 291-309.
11.Cai, L., Xu, Z., Ren, M., Guo, Q., Hu, X., Hu, G., Wan, H., and Peng, P. 2012. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicology and Environmental Safety. 78: 2-8.
12.Caillaud, J., Proust, D., Philippe, S., Fontaine, C., and Fialin, M. 2009. Trace metal distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma. 149: 199-208.
13.Chen, T.B., Zheng, Y.M., Lei, M., Huang, Z.C.h., Wu, H.T., Chen, H., Fan, K.K., Yu, K., Wu, X., and Tian, Q.Z. 2005. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere. 60: 542-551.
14.Dankoub, Z., Ayoubi, S., Khademi, H., and Lu, S.G. 2012. Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, Central Iran, Pedosphere. 22: 33-47.
15.Davari, A., Danehkar, A., Khorasani, N., and Javanshir, A. 2012. Identification of heavy metals contamination at Bushehr mangroves. Journal of Environmental Studies. 38: 7-9.
16.Davies, B.E. 1997. Heavy metal contaminated soils in an old industrial area of Wales, Great Britain: source identification through statistical data interpretation, Water Air Soil Pollution. 94: 85-98.
17.Dogra, N., Sharma, M., Sharma, A., Keshavarzi, A., Minakshi Bhardwaj, R., Thukral, A.K., and Kumar, V. 2020. Pollution assessment and spatial distribution of roadside agricultural soils: a case study from India. International Journal of Environmental Health Research. 30: 146-159.
18.European Union. 2002. Heavy Metals in Wastes, European Commission on Environment. (http://ec.europa.eu/ environment/waste/studies/pdf/heavymetalsreport)
19.Facchinelli, A., Sacchi, E., and Mallen, L. 2001. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution. 114: 313-324.
20.FAO/WHO. 1984. List of contaminants and their maximum levels in foods. Codex Alimentarius Commission. (Unpublished FAO document, CAC/Vol. X–VII. Ed. 1, Available from FAO).
21.Guan, Q., Wang, F., Xu, C., Pan, N., Lin, J., Zhao, R., Yang, Y., and Luo,H. 2018. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 193: 189-197.
22.Hakanson, L. 1980. An ecological risk index for aquatic pollution control, A sedimentological approach. Water Research. 14: 975-1001.
23.Hans, W.P. 2006. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations. Ecological Engineering. 26: 40-5.
24.Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E.Y., and Cheng, H. 2013. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research.20: 6150-6159.
25.Hu, W.Y., Huang, B.M., Weindorf, D.C., and Chen, Y. 2014. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry. Bulletin of Environmental Contamination and Toxicology. 92: 420-426.
26.Hu, W.Y., Zhang, Y., Huang, B., and Teng, Y. 2017. Soil environmental quality in greenhouse vegetable production systems in eastern China: current status and management strategies. Chemosphere. 170: 183-195.
27.Hu, W., Wang, H., Dong, L., Huang, B., Borggaard, O.K., Hansen, H.C.B.,He, Y., and Holm, P.E. 2018.Source identification of heavy metals in peri-urban agricultural soils of southeast China. Environtal Pollution. 237: 650-661.
28.Huang, Y., Li, T.Q., Wu, C.X., He, Z.L., Japenga, J., Deng, M., and Yang, X. 2015. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. Journal of Hazardous Materials. 299: 540-549.
29.Karimi, A., Haghnia, G.H., Ayoubi, Sh., and Safari, T. 2017. Impacts of geology and land use on magnetic susceptibility and selected heavy metals in surface soils of Mashhad plain, northeastern Iran. Journal of Applied Geophysics. 138: 127-134.
30.Kelepertzis, E. 2014. Accumulation of heavy metals in agricultural soils of Mediterranean: insights from Argolida basin, Peloponnese, Greece. Geoderma. 221: 82-90.
31.Keshavarzi, A., and Kumar, V. 2019. Ecological risk assessment and source apportionment of heavy metal contamination in agricultural soils of Northeastern Iran. International Journal of Environmental Health Research. 29: 544-560.
32.Krishna, A.K., and Mohan, K.R. 2016. Distribution, correlation, ecological and health risk assessment of heavy
metal contamination in surface soils around an industrial area, Hyderabad, India. Environmental Earth Science. 75: 411.
33.Kumar, V., Pandita, S., Sharma, A., Bakshi, P., Sharma, P., Karaouzas, I., Bhardwaj, R., Thukral, A.K., and Cerda, A. 2019. Ecological and human health risk appraisal of metal (loid)s in agricultural soils: a review. Geology, Ecology, and Landscapes. Pp: 1-13.
34.Lee, C.S., Li, X., Shi, W., Cheung,S.C., and Thornton, I. 2006. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment. 356: 45-61.
35.Li, L., Holm, P.E., Marcussen, H., and Hansen, H.C. 2014. Release of cadmium, copper, and lead from urban soils of Copenhagen. Environmental Pollution. 187: 90-7.
36.Lin, H.T., Wong, S.S., and Li, G.C. 2004. Heavy metal content of rice and shellfish in Taiwan. Journal of Food and Drug Analysis. 12: 167-74.
37.Liu, S.H., Zeng, G.M., Niu, Q.Y., Liu, Y., Zhou, L., Jiang, L.H., Tan, X.F., Xu, P., Zhang, C., and Cheng, M. 2017. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini-review. Bioresource Technology. 224: 25-33.
38.Lu, X., Wang, L., Li, L.Y., Lei, K., Huang, L., and Kang, D. 2010. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of Hazardous Materials. 173: 744-749.
39.Lu, A., Wang, J., Qin, X., Wang, K., Han, P., and Zhang, S. 2012. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the Total Environment. 
40.Luo, W., Wang, T., Lu, Y., Giesy, J.P., Shi, Y., Zheng, Y., Xing, Y., and Wu, G. 2007. Landscape ecology of the Guanting Reservoir, Beijing, China: multivariate and geostatistical analyses of metals in soils. Environmental Pollution. 146: 567-576.
41.Luo, L., Ma, Y., Zhang, S., Wei, D., and Zhu, Y.G. 2009. An inventory of trace element inputs to agricultural soils
in China. Journal of Environmental Management. 90: 2524-30.
42.McLennan, S.M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems. 2: 1021.
43.Muller, G. 1969. Index of geoaccumulation in sediments of the Rhine River. Geojournal. 2: 108-118.
44.Nael, M., Jalalian, A., Khademi, H., Kalbasi, M., Sotohian, F., and Schulin, R. 2010. Effect of Geopedological Conditions on Content and Distribution of Selected Major and Trace Elements in Forest Soils of Fuman-Masule Region. Journal of Water and Soil Science.14: 71-86. (In Persian)
45.Nan, Z., Li, J., Zhang, J., and Cheng, G. 2002. Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions. Science of the Total Environment. 285: 187-195.
46.Nelson, D.W., and Sommers, L.E. 1982. Total carbon, organic carbon, and organic matter. P 539-577. In: A.L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
47.Nikravesh, M., Karimi, A., Esfandyarpur, E., and Fotovat, A. 2017. Assessment of surface soil pollution with selected heavy metals in Semnan industrial complex and surrounding areas. Journal of Natural Environment. 1: 211-226. (In Persian)
48.Palumbo, B., Angelone, M., Bellanca, A., Dazzi, C., Hauser, S., Neri, R., and Wilson, J. 2000, Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy, Geoderma. 95: 247-266.
49.Pan, Y.P., and Wang, Y.S. 2015. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmospheric Chemistry and Physics. 15: 951-972.
50.Rajabzadeh, M.A., Ghasemkhani, E., and Khosravi, A. 2015. Biogeochemical study of chromite bearing zones in Forumad area, Sabzevar ophiolite, Northeastern Iran. Journal of Geochemical Exploration. 151: 41-49.
51.Rodríguez Martín, J.A., Ramos Miras, J.J., Boluda, R., and Gil, C. 2013. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain), Geoderma. 200: 180-188.
52.Shakeri, M., Karimi, A., and Haghnia, G. 2017. Characteristics of in situ soils formed in Sabzevar ophiolite area.
5th Natiional Conference of Iranian Association of Geomorphology, Mashhad, Iran.
53.Sharma, P., Bhardwaj, R., Arora, N., Arora, H.K., and Kumar A. 2008. Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defense system in Brassica juncea. Biologia Plantarum. 52: 767-770.
54.Sheng-Gao, L.U., Shi-Qiang, B.A.I., and Li-Xia, F.U. 2008. Magnetic properties as indicators of Cu and Zn contamination in soils. Pedosphere.18: 479-485.55 .ngh, S.K., Pandey, C.B., Sidhu, G.S., Sarkar, D., and Sagar, R. 2011. Concentration and stock of carbon in the soils affected by land uses and climates in the western Himalaya, India. Catena. 87: 78-89.
56.Sungur, A., Soylak, M., and Ozcan H. 2013. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. Chemical Speciation and Bioavailability. 26: 219-30.
57.Sutherland, R.A. 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology. 39: 611-627.
58.Taghipour, M., Ayoubi, S., and Khademi, H. 2011. Contribution of lithologic and anthropogenic factors to surface soil heavy metals in western Iran using multivariate geostatistical analyses. Soil and Sediment Contamination.20: 921-937.
59.USEPA. 1983. Office of Solid Waste and Emergency Response, Hazardous waste land treatment.
60.Walkley, A., and Black, I.A. 1934. An examination of degradation method for determining soil organic matter: a proposed modification of the chromic acid titration method. Soil Science.37: 29-35.
61.Westerman, R.L. 1990. Soil Testing and Plant Analysis. Soil Science Society of America. 3rd edition, Madison, Wisconsin, USA. 784p.
62.Yongming, H., Peixuan, D., Junji, C., and Posmentier, E.S. 2006. Multivariate analysis of heavy metal contamination in urban dust of Xi'an, Central China. Science of the Total Environment.355: 176-186.
63.Zhang, X.P., Deng, W., and Yang, X.M. 2002. The background concentrations of soil trace elements