تأثیر ماده آلی و کلرید پتاسیم بر شاخص‌های پایداری ساختمان خاک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد، گروه علوم خاک، دانشگاه فردوسی مشهد

2 استاد، گروه علوم خاک، دانشگاه فردوسی مشهد

چکیده

سابقه و هدف: اکثر خاک‌های مناطق خشک و نیمه‌خشک ایران دارای کمتر از یک درصد ماده آلی هستند که این مسئله سبب کاهش کیفیت برخی از ویژگی‌های فیزیکی خاک ازجمله کاهش پایداری خاکدانه‌ها، تخریب ساختمان خاک و کاهش هدایت هیدرولیکی اشباع می‌شود. با توجه به اهمیت و نقش مواد آلی در پایداری ساختمان خاک از یک‌سو و وجود سدیم و پتاسیم در کود گاوی و اثرات مخرب آن‌ها بر ساختمان خاک از سوی دیگر این پژوهش با هدف بررسی تأثیر کود گاوی، لجن فاضلاب و کاتیون پتاسیم بر شاخص‌های پایداری ساختمان خاک انجام شد.
مواد و روش‌ها: در این پژوهش تاثیر کود گاوی و لجن فاضلاب شهری در سه سطح صفر، 1 و 2 درصد و کاتیون پتاسیم (کلرید پتاسیم) در سه سطح شوری 1، 3 و 5 دسی زیمنس بر متر در سه تکرار به‌صورت طرح کاملاً تصادفی در قالب آرایش فاکتوریل برای مقایسه تیمارها بر شاخص‌های پایداری ساختمان خاک مطالعه شد. تیمارهای یک و دو درصد کود گاوی و لجن فاضلاب به خاک اعمال شده و خاک تیمار شده در گلدان یک کیلویی ریخته شد. به همه گلدان‌ها در ابتدا 300 میلی‌لیتر آب شهری اضافه شد تا به حالت اشباع برسد. سپس، آبیاری با محلول‌های حاوی KCl آغاز شد و هر 7 رو ز یک‌بار 200 میلی‌لیتر محلولKCl به گلدان‌ها افزوده شد. این دوره آبیاری 8 هفته به طول انجامید و بعد از گذشت 8 هفته شاخص‌های پایداری ساختمان خاک شامل شاخص پایداری نرمال، میانگین هندسی قطر خاکدانه‌ها و درصد تخریب خاکدانه‌ها اندازه‌گیری شدند. تجزیه‌وتحلیل آماری داده‌ها توسط نرم‌افزار آماری JMP8 انجام شد. مقایسه میانگین‌ها با استفاده از آزمون LSD و در سطح یک درصد انجام شد.
یافته‌ها: نتایج شاخص‌های پایداری ساختمان خاک نشان داد که تیمار لجن فاضلاب اثر مثبت بر میانگین هندسی قطر خاکدانه-ها (GMD) و درصد تخریب خاکدانه (PAD) داشت، درحالی‌که تیمار کود گاوی به دلیل بالا بودن سدیم و پتاسیم آن و اثرات مخرب این دو بر پایداری خاکدانه بر اکثر پارامترهای پایداری ساختمان خاک به‌جز شاخص پایداری نرمال (NSI) اثر منفی داشت. به طور کلی میانگین هندسی قطر خاکدانه‌‌ها در تیمار بدون ماده آلی و شوری سه دسی زیمنس بر متر کمترین و در تیمار یک درصد لجن فاضلاب و همین سطح شوری بیشترین مقدار بودند. همچنین شاخص NSI به ترتیب در تیمارهای شوری سه دسی زیمنس بر متر و بدون ماده آلی کمترین و در شوری یک دسی زیمنس بر متر و یک درصد کود گاوی بیشترین مقدار بود. درصد تخریب خاکدانه‌ها نیز در شوری‌های کمتر از سه دسی زیمنس بر متر با افزایش ماده آلی در بیشتر تیمارها کاهش معنی-داری نشان داد، در حالی که در شوری پنج دسی زیمنس بر متر به دلیل افزایش میزان پتاسیم و اثر مخرب آن بر پایداری ساختمان خاک تغییر ات آن معنی‌دار نبود.
نتیجه‌گیری: . با توجه به اثر مثبت لجن فاضلاب شهری در پایداری خاکدانه در کوتاه‌مدت در این مطالعه، و مقرون‌به‌صرفه بودن لجن فاضلاب پیشنهاد می‌شود اثر افزودن لجن فاضلاب به زمین‌های کشاورزی طی دوره‌های چندساله بر شاخص‌های پایداری ساختمان خاک موردبررسی قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of organic matter and potassium chloride on soil structure stability indices

نویسندگان [English]

  • Sommaye Gholami Jami 1
  • Hojat Emami 2
1 Soil Science Dept,, Faculty of Agriculture, Ferdowsi University of Mashhad
2 Department of soil science, faculty of agriculture, Ferdowsi university of Mashhad
چکیده [English]

Background and Objectives: Most of the soils in arid and semi-arid regions of Iran contain less than 1 % organic matter, which lead to reduce the quality of some physical properties of the soil, including decreasing the stability of aggregates, destruction the soil structure and reducing saturated hydraulic conductivity. Considering to the importance and role of organic matter and the presence of sodium and potassium in cattle manure and their destructive effects on soil structure, this research was performed to study the effect to investigate the effect cattle manure, sewage sludge and potassium chloride on soil structure stability indices.
Materials and Methods: In this research, the effects of cattle manure and municipal sewage sludge at three rates (0, 1 and 2 %) and potassium cation (potassium chloride) at three salinity levels (1, 3 and 5 dS/m) and 3 replications as a completely randomized design and factorial arrangement were studied to compare the treatments on soil structure stability indices. Treatments of 1 and 2 % (weight) cattle manure and sewage sludge were applied to soil and treated soil filled in pots (1 kg weight). To saturate the soil, all pots were irrigated with 300 ml of urban water. Then, irrigation was made by KCl solutions and 200 ml of KCl was added to each pot every week for the period of 8 weeks. After then, soil structural stability indices including normalized stability index (NSI), geometric mean diameter of wet aggregates (GMD), and percentage of aggregate destruction (PAD) were measured. The statistical analysis of data was made by JMP8 software and comparison of means based on LSD test at P < 0.001 was performed.
Results: the results of structural stability showed that sewage sludge treatment had a positive effect on aggregate stability, percentage of aggregate destruction and geometric mean diameter of wet aggregates, while manure application due to high concentration of sodium and potassium and their destructive effects on aggregate stability had the negative effect on most structural stability, except for the normalized stability index. In general, geometric mean diameter of wet aggregates in treatment with no organic matter and salinity level of 3 dS/m was the lowest value and it showed the highest value in 1 % of sewage sludge and salinity level of 3 dS/m. Also, amounts of normalized stability index were the highest and lowest values in salinity of 1 dS/m + 1 % of manure, and salinity of 3 dS/m + no organic matter, respectively. Percentage of aggregate destruction significantly decreased at salinity levels less than 3 dS/m when organic matter increased, while it was not significantly changed at salinity of 5 dS/m due to increment of potassium and its destructive effect on soil structure.
Conclusion: Considering the positive effect of organic matter on stability of aggregates in short term, and the cost effectiveness of sewage sludge, it is suggested that the application the sewage sludge on soil structure indices in agricultural lands will be studied during several years.

کلیدواژه‌ها [English]

  • Aggregate stability
  • Organic matter
  • Salinity
  • Normalized stability index
 1.Ahmad, S., Swindale, L.D., and El-swaify, S.A. 2006. Effects of adsorbed cations on physical properties of tropical red earths and tropical black earths. Journal of Soil Science. 20: 2. 255-268.
2.Amezketa, E. 1999. Soil aggregate stability, a review. Journal of Sustainable Agriculture. 14 :2/3. 83-151.
3.Bear, M.H., and Hendrix, P.F. 1994. Water stable aggregates and organic carbon fractions in conventional and no tillage soils. Soil Science Society of America Journal. 58: 777-786.
4.Blanco-Canqui, H., Lal, R., Post, W.M., Izurralde, R.C., and Owens, L.B. 2006. Soil structure parameters and organic carbon in no till corn with variable stover retention rates. Soil Science. 171: 468-482.
5.Bronick, C.J., and Lal, R. 2005. Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA. Soil and Tillage Research. 81: 2. 239-252.
6.Chan, K.Y., Heenan, D.P., and Oates, A. 2002. Soil carbon fractions and relationship to soil quality under different tillage and stubble management. Soil and Tillage Research. 63: 133-139.
7.Chen, Y., Banin, A., and Borochovitch, A. 1993. Effect of potassium on soil structure in relation to hydraulic conductivity. Geoderma. 30: 135-147.
8.Dontsova, K.M., and Norton, L.D. 2002. Clay dispersion, infiltration, and erosion as influenced by exchangeable Ca and Mg. Soil Science. 167: 3. 184-193.
9.Farahani, E., Emami, H., Fotovat, A., Khorassani, R., and Keller, T. 2020.Soil available water and plant growth in relation to K:Na ratio. Geoderma.263: 114173-114180.
10.Gee, GW., and Bauder. J.M. 1986. Partical-size analysis. P 383-411. In: A. Klute (ed.). Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. Agronomy Monogroph No. 9 (2nd edition), American Society of Agronomy, Madison, WI.
11.Ghafari, H., and Neyshabouri, M.R. 2012. Salinity and Sodicity Effects of Irrigation Water on Soil Physical Quality Criteria. Iranian Journal of Water and Soil, 26: 1. 65-74. (In Persian)
12.Herrick, J.E., Whitford, W.G., de Soyza, A.G., van Zee, J.W., Havstad, K.M., Seybold, C.A., and Walton, M. 2001. Field soil aggregate stability kit for soil quality and rangeland health evaluations. Catena. 44: 27-35.
13.Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., and Basirat, S. 2012. Organic resource   management: impacts on soil aggregate stability and other soil physic-chemical properties. Agriculture, Ecosystems and Environment. 148: 22-28.
14.Kay, B.D. 2000. Soil Structure.P 229-264. In: E.M. Sumner (Ed.). Handbook of Soil Science. CRC Press, USA: F.I., Boca Raton.
15.Kemper, A., and Rosenau, RC. 1986. Aggregate stability and size distribution. P 425-442. In: A. Klute, (ed). Methods of Soil Analysis. Part 1, second ed. Agronomy Monograph. 9. ASA and SSSA, Madison, WI.
16.Levy, G.J., Mamedov, A.I., and Oldstein, D. 2003. Sodicity and water quality effects on slaking of aggregates from semi- arid soils. Soil Science.168: 552-562.
17.Levy, G.J., and Torrento, J.R. 1995. Clay dispersion and macroaggregate stability as affected by exchangeable potassium and sodium. Soil Science. 160: 352-358.
18.Mamedov, A.I., Levy, G.J., Shainberg, I. and Letey, J. 2001. Wetting rate, sodicity and soil texture effects on infiltration rate and runoff. Australian Journal of Soil Research. 39: 1293-1305.
19.Neyshabouri, M., Alizadeh, R.N., Ustaneh, Sh., and Turchi, M. 2008. Comparison of stability and their effect on soil characteristics. Journal of Agricultural Science. 18: 3. 99-112.
20.Nemati, F., Raiesi, F., and Hosseinpour, A.R. 2012. Aggregate stability under different treatments of soil salinity and organic materials in the presence of the anecic earthworm Lumbricus terrestris L. under greenhouse conditions. Iranian Journal of Water and Soil Conservation. 19: 1. 41-60. (In Persian)
21.Oku, E., Fagbola, O., and Troung, P. 2011. Evaluation of vetiver grass buffer strips and organomineral fertilization for the improvement of soil physical properties. Kasetsart Journal (Natural Science). 45: 824-831.
22.Page, A.L., Miller, R.H., and Keeney, D.R. 1982. Methods of soil analysis, part 2 chemical and microbiological properties. Madison-Wisconsin, USA. 1143p.
23.Pagliai, M., Guidi, G., La Marca, M., Giachetti, M., and Lucamante, G. 1981. Effects of sewage sludges and composts on soil porosity and aggregation. Journal of Environmental Quality. 10: 4. 556-561.‏
24.Piccolo, A., Picteramellara, G., and Mbagwa, J.S.C. 1997. Use of humic substance as soil conditioners to increase aggregate stability. Geoderma. 75: 267-277.
25.Rengasamy, P., and Marchuk, A. 2011. Cation ratio of soil structural stability (CROSS). Soil Research. 49: 280-285.
26.Rengasamy, P., and Olsson, K.A. 1991. Sodicity and soil structure. Australian Journal of Soil Research. 29: 935-952.
27.Rousta, M.J. 2009. Effect of tillage practices on organic matter content and aggregate stability. Soil and Water Research. 23: 61-67. (In Persian)
28.Shainberg, I., and Letey, J. 1984. Response of soils to sodic and saline conditions. Hilgardia. 52: 2. 1-57.
29.Six, J., Elliott, E.T., and Paustian, K. 2000. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal.64: 1042-1049.
30.Smiles, D.E. 2006. Sodium and potassium in soils of the Murray–Darling Basin. Australian Journal of Soil Research. 44: 727-730.
31.Suguru, P.M. 2014. Effects of Magnesium on Cation Selectivity and Structural Stability in prominent Vertisols of Karnataka. Fungal Genome and Biology. 5: 1. 1-5.
32.Taghdisi Heydarian, Z., Khorasani,R., and Emami, H. 2019. Effect of zeolite and cow manure on some physical properties of soil. Iranian Journal of Water and Soil Conservation. 25: 5. 149-166. (In Persian)
33.Verhulst, N., Govaerts, B., Verachtert, E., Kienle, F., Limon-Ortega, A., Deckers, J., Raes, D., and Sayre, K.D. 2009. The importance of crop residue management in maintaining soil quality in zero tillage systems; a comparison between long-term trials in rainfed and irrigated wheat systems. 4th World Congress on Conservation Agriculture. Pp: 71-79.
34.Walkley, A., and Black, I.A. 1934. An examination of Digestion method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science.37: 29-37.
35.Zaker, M., and Emami, H. 2019. Effect of potassium to bivalent cations ratio in irrigation water on some physical and hydraulic properties of sandy loam soil. Soil and Environment. 38: 1. 66-74.
36.Zaker, M., Emami, H., Fotovat, A., and Astaraei, A.R. 2018. Effect of salinity and potassium irrigation water on soil structural proprties. Applied Soil Research. 6: 1. 51-61 (In Persian)
37.Zhou, M., Liu, C., Wang, J., Meng, Q., Yuan, Y., Ma, X., Liu, X., Zhu, Y., Ding, G., Zeng, J.X., and Du, W. 2020. Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Scientific Reports. 10: 265. 1-12.