1.Adhikari, K., Minasny, B., Greve, B.G., and Greve, M.H. 2014. Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma. 214-215: 101-113.
2.Akpa, S.I.C., Odeh, I.O.A., Bishop, F.A., Hartemink, A.E., and Amapu, I.Y.2016. Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma. 271: 202-215.
3.Ayobi, Sh., and Jalalian, A. 2013. Modern concepts in Soil Science (Pedometric). Isfahan University of Technology. Press, 385p. (In Persian)
4.Bower, C.A., Reitemeier, R.F., and Fireman, M. 1952. Exchangeable cation analysis of saline and alkali soils. Soil Science, 73: 251-262.
5.Ceddia, M.B., Vieira, S.R., Villela, L.O., Mota, L.S., Anjos, H.C., and Carvalho, F.D. 2009. Topography and spatial variability of soil physical properties. Scientia Agricola. 66: 338-352.
6.Dang, K.B., Burkhard, B., Windhorst, W., and Muller, F. 2019. Application of a hybrid neural-fuzzy inference system for mapping crop suitability areas and predicting rice yields. Environmental Modelling and Software. 114: 166-180.
7.El Baroudy, A.A. 2016. Mapping and evaluating land suitability using a GIS-based model. Catena. 140: 96-104.
8.FAO. 1976. A Framework for Land Evaluation; Soils Bulletin No.32. FAO; Food and Agriculture Organization of the United Nations: Rome, Italy.
9.FAO. 1985. Guidelines: Land Evaluation for Irrigated Agriculture; Soil Bulletin No.55. FAO; Food and Agriculture Organization of the United Nations: Rome, Italy.
10.Gee, G.W., and Bauder, J.W. 1986. Particle size analysis, P 383-411. In:A. Klute. (ed). Methods of Soil Analysis. Part 1: Physical and mineralogical methods, second edition. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, WI.
11.Givi, J. 1997. Qualitative Evaluation of Land Suitability for Field and Fruit Crops. Iranian Soil and Water Research Institute, Tehran, Iran. (In Persian)
12.Jafari, A., Finke, P.A., de Wauw, J.V., Ayoubi, S., and Khademi, H. 2012. Spatial prediction of USDA-great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and
soil types. European J of Soil Science. 63: 284-298.
13.Kidd, D., Webb, M., Malone, B., Minasny, B., and McBratney, A. 2015. Digital soil assessment of agricultural suitability, versatility and capital in Tasmania, Australia. Geoderma Reg.6: 7-21.
14.McBratney, A.B., Santos, M.L.M.,and Minasny, B. 2003. On digital soil mapping. Geoderma. 117: 3-52.
15.McLean, E.O. 1982. Soil pH and lime requirement, P 199-224.9. In: A.L. Page, R.H. Miller, and D.R. Keeney (eds.), Methods of Soil Analysis, Part 2 Chemical and Microbiological Properties, 2nd ed. ASA-SSSA, Madison, WI.
16.Minasny, B., and McBratney, A.B. 2016. Digital soil mapping: A brief history and some lessons. Geoderma. 264:
17.Mosleh, Z., Salehi, M.H., Fasakhodi, A.A., Jafari, A., Mehnatkesh, A.,and Borujeni, I.E. 2017. Sustainable allocation of agricultural lands and water resources using suitability analysis and mathematical multi-objective programming. Geoderma. 303: 52-59.
18.Nabiollahi, K., Eskandari, Sh., Taghizadeh-Mehrjardi, R., Kerry, R., and Triantafilis, J. 2019. Assessing soil organic carbon stocks under land use change scenarios using random forest models. Carbon Managment. 10: 1. 63-77.
19.Nabiollahi, K., Golmohammadi, F., Taghizadeh-Mehrjardi, M., Kerry, R., and Davari, M. 2018a. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma. 318: 482-494.
20.Nabiollahi, K., Taghizadeh-Mehrjardi, M., and Eskandari, Sh. 2018b. Assessing and monitoring the soil quality of forested and agricultural areas using soil-quality indices and digital soil-mapping in a semi-arid environment. Archive of. Agronomy and Soil Science. 64: 5. 482–494.
21.Nelson, D.W., and Sommers, L.E. 1982. Total carbon, organic carbon, and organic matter. P 539-594 In: A.L.
Page, D.R., Keeney (eds.), Methods of Soil Analysis, Part 2-Chemical and Microbiological Properties. ASA-SSSA, Madison, WI.
22.P Ostovari, Y., Honarbakhsh, A., Sangoony, H., Zolfaghari, F., Maleki, K., and Ingram, B. 2019. GIS and multi-criteria decision-making analysis assessment of land suitability for rapeseed farming in calcareous soils of semi-arid regions. Ecological Indicators. 103: 479-487.
23.Pahlavan-Rad, M.R., Toomanian, N., Khormali, F., Brungard, C.W.,Komaki, C.B., and Bogaert, P. 2014. Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma.232-234: 97-106.
24.Pahlavan-Rad, M.R., Akbarimoghaddam, A. 2018. Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran). Catena. 160: 275-281.
25.Pouladi, N., Møller, A.B., Tabatabai, S., and Greve, M.H. 2019. Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma. 342: 85-92.
26.Prakash, T.N. 2003. December. Land suitability analysis for agricultural crops: a fuzzy multicriteria decision making approach. M.Sc. Thesis, The International Institute for Geo-information Science and Earth Observation (ITC), Enschede, The Netherlands.
27.Rentschler, T., Gries, P., Behrens, T., Bruelheide, H., Kühn, P., Seitz, S., Shi, X., Trogisch, S., Scholten, T., and Schmidt, K. 2019. Comparison of catchment scale 3D and 2.5 D modelling of soil organic carbon stocks in Jiangxi Province, PR China. PLoS ONE. 14: e0220881.
28.Rezaei, S., and Gilkes, R. 2005. The effects of landscape attributes and plant community on soil physical properties in rangelands. Geoderma. 125: 167-176.
29.Rhoades, J.D. 1982. Soluble salts.P 167-179. In: A.L. Page, (ed.), Methods of Soil Analysis, Part II, 2nd ed., ASA, Monograph No. 9, Madison, WI.
30.Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th edn. United States Department of Agriculture, Washington, 372p.
31.Sparks, D.L., Page, A.L., Helmke, P.A., Leoppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, G.T., and summer, M.E. 1996. Methods of Soil Analysis. Soil Science Society of American Journal. Book Series No. 5. ASA and SSSA, Madison, Wisconsin, WI, USA.
32.Sys, C., Van Ranst, E., and Debaveye, J. 1991. Land Evaluation. Part I: Principles in land evaluation and crop production calculations. Agricultural Publications No. 7. General Administration for Development Cooperation Place, Brussels, Belgium.
33.Taghizadeh-Mehrjardi, R. 2016. Modern concepts in Soil Science (Pedometric). Ardakan Univ. Press, 311p. (In Persian)
34.Taghizadeh-Mehrjardi, R., Nabiollahi, K., and Kerry, R. 2016. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma.253-254: 67-77.
35.Tang, H. 1993. Land suitability classification based on fuzzy set theory and modelling of land production potential of maize and winter wheat in different zones of China (Doctoral dissertation, Ghent University).
36.Teng, T., Viscarra Rossel, R.A., Shi, Z., and Behrens, T. 2018. Updating a national soil classification with spectroscopic predictions and digital soil mapping. Catena. 164: 125-134.
37.Vasu, D., Srivastava, R., Patil, N.G., Tiwary, P., Chandran, P., and Singh, S.K. 2018. A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level. Land Use Policy. 79: 146-163.
38.Were, K., Bui, D.T., Dick, Q.B., and Singh, B.R. 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators. 52: 394-403.
39.Zeraatpisheh, M., Ayoubi, Sh., Jafari, A., and Finke, P. 2017. Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology. 285: 186-204.
40.Zeraatpisheh, M., Bakhshandeh, E., Hosseini, and Alavi, S.M. 2020. Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping. Geoderma. 363: 114-139.