پیش‌بینی کلاس تناسب اراضی یونجه، سیب زمینی و گندم آبی با استفاده از ماشین یادگیری جنگل تصادفی و داده‌های کمکی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد، گروه علوم و مهندسی خاک، دانشگاه کردستان

2 دانشیار، گروه علوم و مهندسی خاک، دانشگاه کردستان،

3 هیأت علمی، گروه علوم و مهندسی خاک، دانشگاه کردستان

4 استادیار ، گروه علوم و مهندسی خاک، دانشگاه کردستان

چکیده

سابقه و هدف: استفاده بی‌رویه از منابع اراضی به دلیل افزایش نیاز به غذا توسط انسان منجر به تخریب و کاهش سطح اراضی قابل کشت شده است. یکی از راه‌های افزایش تولید در واحد سطح، ارزیابی تناسب اراضی می‌باشد. ارزیابی تناسب اراضی عبارتست از تطابق یک تیپ از اراضی برای استفاده تعریف شده. بررسی تغییرات مکانی کلاس‌های تناسب اراضی، جهت افزایش تولید و جلوگیری از تخریب اراضی ضروری می‌باشد. تعیین کلاس تناسب اراضی مستلزم اندازه‌گیری ویژگی‌های خاک، توپوگرافی، رطوبتی و اقلیم می-باشد که اندازه‌گیری این ویژگی‌ها پرهزینه و زمان‌بر می‌باشد. یکی از راه‌های حل این مشکل، استفاده از ماشین‌های یادگیری و داده‌های کمکی می‌باشد. ماشین‌های یادگیری برای قراری ارتباط ویژگی‌های مختلف با متغیرهای کمکی جهت بررسی تغییرات مکانی و زمانی آنها به کاربرده می‌شوند. ماشین یادگیری جنگل تصادفی یکی از معمول‌ترین و پرکاربردترین ماشین‌های یادگیری است. هدف از این پژوهش ارزیابی تناسب اراضی بر اساس چهارچوب تناسب اراضی فائو و روش پارامتریک برای سه محصول مهم آبی منطقه شامل یونجه، سیب زمینی و گندم آبی و پیش‌بینی کلاس‌های تناسب آنها با استفاده از ماشین یادگیری جنگل تصادفی و داده‌های کمکی می-باشد.
مواد و روش‌ها: 122 پروفیل خاک در منطقه قروه استان کردستان (با وسعت 6500 هکتار) حفر، تشریح و نمونه‌برداری برداشت شد. در کلیه نمونه‌ها ی خاک خصوصیات بافت، اسیدیته، کربن آلی، آهک، گچ، ESP، هدایت الکتریکی و سنگریزه اندازه‌گیری شد. علاوه-بر‌این داده‌های اقلیم و توپوگرافی هم ثبت شد. با استفاده از خصوصیات اقلیم، خاک و توپوگرافی و بر اساس چهارچوب تناسب اراضی فائو و روش پارامتریک کلاس‌های تناسب اراضی تعیین گردید. متغیرهای محیطی استفاده شده در این پژوهش پارامترهای سرزمین، نقشه اجزاء واحد اراضی و داده‌های تصویر +ETM بودند. جهت ارتباط بین کلاس تناسب اراضی و متغیرهای کمکی از ماشین یادگیری جنگل تصادفی استفاده شد و با استفاده از روش اعتبارسنجی تقاطعی و شاخصه‌های آماری صحت کلی و شاخص کاپا مورد ارزیابی قرار گرفت.
یافته‌ها: ن: نتایج نشان داد که که کلاس تناسب منطقه مورد مطالعه برای گندم آبی، یونجه و سیب زمینی به ترتیب دارای 31، 47 و 57 درصد کلاس N2، 21، 34 و 27 درصد کلاس N1 و 48، 19 و 16 درصد کلاس S3 می‌باشد. محدودیت‌های اصلی منطقه برای کشت این محصولات شامل شیب زیاد، خاک کم عمق، سنگریزه و اسیدیته می‌باشدبرای پیش‌بینی کلاس تناسب اراضی یونجه، سیب زمینی و گندم آبی متغیرهای کمکی شامل شاخص بالای پشته با درجه تفکیک بالا، شاخص همواری‌دره با درجه تفکیک بالا، فاکتورLS، ارتفاع، شاخص خیسی و نقشه اجزاء واحد اراضی مهم‌ترین بودند. نتایج این پژوهش نشان داد که ماشین یادگیری جنگل تصادفی جهت پیش‌بینی کلاس تناسب اراضی گندم آبی با 78/0 و 71/0، یونجه با 75/0 و 70/0 و سیب زمینی با 79/0 و 72/0 به ترتیب برای صحت کلی و شاخص کاپا دارای دقت مناسب برای پیش‌بینی کلاس تناسب اراضی می‌باشد.
نتیجه‌گیری: پستی و بلندی مهمترین فاکتورهای خاک‌سازی بوده و در توزیع مکانی کلاس تناسب اراضی موثر می‌باشد. منطقه مورد مطالعه به علت محدودیت‌‌های خاک و توپوگرافی دارای تناسب کم تا نامناسب برای کشت این محصولات می‌باشد و عملیات اصلاح اراضی مناسب جهت افزایش تولید و مدیریت پایدار اراضی توصیه می‌شود. ماشین یادگیری جنگل تصادفی دقت مناسیب جهت برآورد کلاس تناسب اراضی داشت. لذا پیشنهاد می‌گردد جهت نقشه‌برداری کلاس تناسب اراضی تکنیک‌های ماشین یادگیری (همچون جنگل تصادفی) و داده‌های کمکی از قبیل پارامترهای سرزمین، تصاویر ماهواره‌ای و نقشه اجزاء اراضی استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of land suitability class of alfalfa, potato and irrigated wheat using random forest learning machine and auxiliary data

نویسندگان [English]

  • Bahare Zandi 1
  • kamal nabiollahi 2
  • Sayed taher hossaini 3
  • Mohamad Ali Mahmoodi 4
1 Department of Soil Science and Engineering Faculty of Agriculture University of Kurdistan
2 Kurdistan university
3 Department of Soil Science and Engineering Faculty of Agriculture University of Kurdistan
4 Department of Soil Science and Engineering Faculty of Agriculture University of Kurdistan
چکیده [English]

Background and objectives: Improper use of land resources due to increased human food needs has led to the destruction and reduction of arable land. One way to increase production per unit area is to land suitability assessment. Land suitability assessment is the fitness of a type of land for defined use. Assessing spatial variability of land suitability class is necessary to increase production and prevent land degradation. Determining the land suitability class requires measuring soil, topography, moisture and climate properties, which are costly and time consuming. One solution to this problem is to use learning machines and auxiliary data. Learning machines are used to relate various properties with auxiliary variables to assess their spatial and temporal variability. Random forest learning machine is one of the most common and widely used learning machines. The aim of this study is to assess land suitability based on FAO land suitability framework and parametric method for three important irrigated crops of the region, including alfalfa, potato and irrigated wheat, and to predict their land suitability classes using random forest learning machine and auxiliary data.
Materials and Methods: 122 soil profiles were dug, described and sampled in the Ghorveh area of Kurdistan Province (covers 6500 ha). Soil texture, acidity, organic carbon, CaCO3, gypsum, ESP, electrical conductivity and gravel were measured in all soil samples. Moreover, topography and climate data were also recorded. Environmental variables in this research were terrain attributes, land unit components map, and data of ETM+ image. To make a relationship between land suitability class and auxiliary data, random forest (RF) learning machine were applied and using cross validation method and statistic indices including overall accuracy and kappa index was validated.
Results and Discussion: The results showed that suitability class of the study area has 37, 41 and 57% N2 class, 21, 34 and 27% N1 class and 48, 19 and 16% S3 class for irrigated wheat, alfalfa and potato, respectively. The major limitations of the study area to plant the crops are included high slope, shallow soil depth, high pH and gravel.To predict land suitability class of alfalfa, potato and irrigated wheat, auxiliary variables including MRRTF index, MRVBF index, wetness index, LS factor, elevation and land unit components map were the most important. The results of this study showed that the random forest learning machine for prediction of land suitability class of irrigated wheat with 0.78, and 0.71, alfalfa with 0.75 and 0.70 and potato with 0.79 and 0.72 for overall accuracy and kappa index, respectively, had a suitable accuracy.
Conclusion: Topography is the most important soil forming factor and is effective in distribution of land suitability class. The study area, because of limitation of soil and topography has low to non-suitable suitability to plant these crops and it is suggested proper land improvement operations to increase production and land sustainability management. Random forest learning machine had suitable accuracy for predicting land suitability class. Therefore, it is suggested to map land suitability class learning machine techniques (such as randomized forest) and auxiliary data such as terrain attributes, land unit components map and satellite images were applied.

کلیدواژه‌ها [English]

  • Land unit components map
  • Landsat
  • terrain attributes
  • Kurdistan
1.Adhikari, K., Minasny, B., Greve, B.G., and Greve, M.H. 2014. Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma. 214-215: 101-113.
2.Akpa, S.I.C., Odeh, I.O.A., Bishop, F.A., Hartemink, A.E., and Amapu, I.Y.2016. Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma. 271: 202-215.
3.Ayobi, Sh., and Jalalian, A. 2013. Modern concepts in Soil Science (Pedometric). Isfahan University of Technology. Press, 385p. (In Persian)
4.Bower, C.A., Reitemeier, R.F., and Fireman, M. 1952. Exchangeable cation analysis of saline and alkali soils. Soil Science, 73: 251-262.
5.Ceddia, M.B., Vieira, S.R., Villela, L.O., Mota, L.S., Anjos, H.C., and Carvalho, F.D. 2009. Topography and spatial variability of soil physical properties. Scientia Agricola. 66: 338-352.
6.Dang, K.B., Burkhard, B., Windhorst, W., and Muller, F. 2019. Application of a hybrid neural-fuzzy inference system for mapping crop suitability areas and predicting rice yields. Environmental Modelling and Software. 114: 166-180.
7.El Baroudy, A.A. 2016. Mapping and evaluating land suitability using a GIS-based model. Catena. 140: 96-104.
8.FAO. 1976. A Framework for Land Evaluation; Soils Bulletin No.32. FAO; Food and Agriculture Organization of the United Nations: Rome, Italy.
9.FAO. 1985. Guidelines: Land Evaluation for Irrigated Agriculture; Soil Bulletin No.55. FAO; Food and Agriculture Organization of the United Nations: Rome, Italy.
10.Gee, G.W., and Bauder, J.W. 1986. Particle size analysis, P 383-411. In:A. Klute. (ed). Methods of Soil Analysis. Part 1: Physical and mineralogical methods, second edition. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, WI.
11.Givi, J. 1997. Qualitative Evaluation of Land Suitability for Field and Fruit Crops. Iranian Soil and Water Research Institute, Tehran, Iran. (In Persian)
12.Jafari, A., Finke, P.A., de Wauw, J.V., Ayoubi, S., and Khademi, H. 2012. Spatial prediction of USDA-great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and
soil types. European J of Soil Science. 63: 284-298.
13.Kidd, D., Webb, M., Malone, B., Minasny, B., and McBratney, A. 2015. Digital soil assessment of agricultural suitability, versatility and capital in Tasmania, Australia. Geoderma Reg.6: 7-21.
14.McBratney, A.B., Santos, M.L.M.,and Minasny, B. 2003. On digital soil mapping. Geoderma. 117: 3-52.
15.McLean, E.O. 1982. Soil pH and lime requirement, P 199-224.9. In: A.L. Page, R.H. Miller, and D.R. Keeney (eds.), Methods of Soil Analysis, Part 2 Chemical and Microbiological Properties, 2nd ed. ASA-SSSA, Madison, WI.
16.Minasny, B., and McBratney, A.B. 2016. Digital soil mapping: A brief history and some lessons. Geoderma. 264:
17.Mosleh, Z., Salehi, M.H., Fasakhodi, A.A., Jafari, A., Mehnatkesh, A.,and Borujeni, I.E. 2017. Sustainable allocation of agricultural lands and water resources using suitability analysis and mathematical multi-objective programming. Geoderma. 303: 52-59.
18.Nabiollahi, K., Eskandari, Sh., Taghizadeh-Mehrjardi, R., Kerry, R., and Triantafilis, J. 2019. Assessing soil organic carbon stocks under land use change scenarios using random forest models. Carbon Managment. 10: 1. 63-77.
19.Nabiollahi, K., Golmohammadi, F., Taghizadeh-Mehrjardi, M., Kerry, R., and Davari, M. 2018a. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma. 318: 482-494.
20.Nabiollahi, K., Taghizadeh-Mehrjardi, M., and Eskandari, Sh. 2018b. Assessing and monitoring the soil quality of forested and agricultural areas using soil-quality indices and digital soil-mapping in a semi-arid environment. Archive of. Agronomy and Soil Science. 64: 5. 482–494.
21.Nelson, D.W., and Sommers, L.E. 1982. Total carbon, organic carbon, and organic matter. P 539-594 In: A.L.
Page, D.R., Keeney (eds.), Methods of Soil Analysis, Part 2-Chemical and Microbiological Properties. ASA-SSSA, Madison, WI.
22.P Ostovari, Y., Honarbakhsh, A., Sangoony, H., Zolfaghari, F., Maleki, K., and Ingram, B. 2019. GIS and multi-criteria decision-making analysis assessment of land suitability for rapeseed farming in calcareous soils of semi-arid regions. Ecological Indicators. 103: 479-487.
23.Pahlavan-Rad, M.R., Toomanian, N., Khormali, F., Brungard, C.W.,Komaki, C.B., and Bogaert, P. 2014. Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma.232-234: 97-106.
24.Pahlavan-Rad, M.R., Akbarimoghaddam, A. 2018. Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran). Catena. 160: 275-281.
25.Pouladi, N., Møller, A.B., Tabatabai, S., and Greve, M.H. 2019. Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma. 342: 85-92.
26.Prakash, T.N. 2003. December. Land suitability analysis for agricultural crops: a fuzzy multicriteria decision making approach. M.Sc. Thesis, The International Institute for Geo-information Science and Earth Observation (ITC), Enschede, The Netherlands.
27.Rentschler, T., Gries, P., Behrens, T., Bruelheide, H., Kühn, P., Seitz, S., Shi, X., Trogisch, S., Scholten, T., and Schmidt, K. 2019. Comparison of catchment scale 3D and 2.5 D modelling of soil organic carbon stocks in Jiangxi Province, PR China. PLoS ONE. 14: e0220881.
28.Rezaei, S., and Gilkes, R. 2005. The effects of landscape attributes and plant community on soil physical properties in rangelands. Geoderma. 125: 167-176.
29.Rhoades, J.D. 1982. Soluble salts.P 167-179. In: A.L. Page, (ed.), Methods of Soil Analysis, Part II, 2nd ed., ASA, Monograph No. 9, Madison, WI.
30.Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th edn. United States Department of Agriculture, Washington, 372p.
31.Sparks, D.L., Page, A.L., Helmke, P.A., Leoppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, G.T., and summer, M.E. 1996. Methods of Soil Analysis. Soil Science Society of American Journal. Book Series No. 5. ASA and SSSA, Madison, Wisconsin, WI, USA.
32.Sys, C., Van Ranst, E., and Debaveye, J. 1991. Land Evaluation. Part I: Principles in land evaluation and crop production calculations. Agricultural Publications No. 7. General Administration for Development Cooperation Place, Brussels, Belgium.
33.Taghizadeh-Mehrjardi, R. 2016. Modern concepts in Soil Science (Pedometric). Ardakan Univ. Press, 311p. (In Persian)
34.Taghizadeh-Mehrjardi, R., Nabiollahi, K., and Kerry, R. 2016. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma.253-254: 67-77.
35.Tang, H. 1993. Land suitability classification based on fuzzy set theory and modelling of land production potential of maize and winter wheat in different zones of China (Doctoral dissertation, Ghent University).
36.Teng, T., Viscarra Rossel, R.A., Shi, Z., and Behrens, T. 2018. Updating a national soil classification with spectroscopic predictions and digital soil mapping. Catena. 164: 125-134.
37.Vasu, D., Srivastava, R., Patil, N.G., Tiwary, P., Chandran, P., and Singh, S.K. 2018. A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level. Land Use Policy. 79: 146-163.
38.Were, K., Bui, D.T., Dick, Q.B., and Singh, B.R. 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators. 52: 394-403.
39.Zeraatpisheh, M., Ayoubi, Sh., Jafari, A., and Finke, P. 2017. Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology. 285: 186-204.
40.Zeraatpisheh, M., Bakhshandeh, E., Hosseini, and Alavi, S.M. 2020. Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping. Geoderma. 363: 114-139.