بررسی اثر مدیریت کاربرد نیتروژن در ترکیب با اسید سالیسیلیک بر رشد و عملکرد گندم در خاک‏های شور – مطالعه موردی خاک‌های انبار الوم استان گلستان

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد، گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، 2دانشیار گروه علوم خاک،

2 دانشیار ، گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 استادیار ، گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان،

4 استادیار ، مؤسسه تحقیقات پنبه کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی گرگان

چکیده

سابقه و هدف: شوری یکی از عمده‌ترین و مخرب‌ترین محدودیت های موجود در محیط رشد گیاه است که نه‏تنها رشد بلکه تولیدات کشاورزی و حاصلخیزی خاک را نیز تحت تأثیر قرار می‌دهد. تنش شوری باعث عدم تعادل مواد مغذی و هورمونی، سمیت یونی، تنش اکسیداتیو و اسمزی و افزایش حساسیت گیاه به بیماری‏ها می‌شود. در همین راستا تحقیقات نشان داده است که اسید سالیسیلیک سبب ایجاد مقاومت در گیاهان نسبت به تنش‌های محیطی از جمله شوری می‌شود. نیتروژن نیز با توجه به نقش چشمگیری که در استقرار گیاه و کسب توانایی‌های فتوسنتزی و فیزیولوژیکی داشته، اثر مستقیمی بر عملکرد گیاه برعهده دارد.
مواد و روش‏ها: به منظور بررسی اثرات اسید سالیسیلیک و مقادیر مصرف کود نیتروژنی در شوری‌های مختلفِ اراضی شرکت سهامی مزرعه نمونه واقع در انبار الوم شهرستان آق قلا استان گلستان بر رشد گندم رقم مروارید، آزمایشی به‌صورت اسپیلت پلات فاکتوریل در قالب طرح پایه بلوک‌های کامل تصادفی در چهار تکرار انجام شد. فاکتور اصلی شامل سه سطح شوری طبیعی خاک، )4-3 زیر سطح آستانه تحمل گندم (شاهد)، 11-9 و 15-13 دسی‌زیمنس بر متر) و فاکتورهای فرعی شامل دو سطح اسید سالیسیلک (صفر و 5/1 میلی مولار) و سه سطح کود نیتروژن (مصرف اوره در مقادیر 30 درصد کمتر از توصیه آزمون خاک، توصیه آزمون خاک، و 30 درصد بیشتر از توصیه آزمون خاک) بود. اسید سالیسیلیک به‏صورت دو بار محلول‏پاشی در مرحله پنجه‏زنی به‏فاصله 2 هفته انجام شد. تیمارهای نیتروژنی در سه مرحله- قبل از کاشت و دو بار سرک در مراحل پنجه‏زنی و طویل‏شدن ساقه- اعمال شد. ارتفاع و وزن خشک گیاه، عملکرد دانه، تعداد خوشه، تعداد دانه در خوشه، وزن هزار دانه و طول خوشه اندازه‌گیری شدند.
یافته‌ها: نتایج نشان داد با افزایش شوری عملکرد و اجزای عملکرد کاهش یافت (01/0≥p). با افزایش میزان نیتروژن، عملکرد دانه و اجزای آن، افزایش یافت (01/0≥p). به‌ طوری‌که بیشترین عملکرد دانه در تیمار 30 درصد نیتروژن بیشتر از توصیه آزمون خاک دیده شد که اختلاف معنی‏دار نسبت به دو سطح دیگر داشت. مصرف اسید سالیسیلیک سبب افزایش تمام پارامترهای عملکرد و اجزای آن به غیر از تعداد دانه در خوشه و طول خوشه شد (01/0≥p). اثر متقابل شوری و نیتروژن نشان داد که مصرف نیتروژن بیشتر از توصیه آزمون خاک تا سطح شوری متوسط (dS/m 11-9) سبب افزایش عملکرد دانه و اجزای عملکرد شد ولی در شوری زیاد (dS/m 15-13) سبب کاهش این صفات شد. در شرایط شوری کم و متوسط استفاده توام اسید سالیسیلیک و نیتروژن بالا سبب افزایش عملکرد و اجزای عملکرد گندم گردید، اما در شوری زیاد نتوانست اثر بسزایی بر آن‏ها داشته باشد.
نتیجه‌گیری: مدیریت کاربرد نیتروژن همراه با مصرف اسید سالیسیلیک تاحدودی توانست اثرات مخرب شوری تا سطح شوری متوسط را کاهش داده و منجر به بهبود رشد و عملکرد گیاه گردد و در سطح شوری بالا بهتر است مصرف کود نیتروژن کاهش یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Interactive effect of salicylic acid and nitrogen application management on wheat growth and yield in saline soils- A case study in Anbar Olum, Golestan province

نویسندگان [English]

  • Ghasem Ghorbani Nasrabadi 1
  • Esmael Dordipour 2
  • Mojtaba Barani motlagh 2
  • Elham Malekzadeh 3
  • Abdolreza Gharanjiki 4
1 M.Sc. Graduate of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources
2 Member of scientific board
3 Assistant Professor, Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources
4 Assistant Professor, Cotton Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
چکیده [English]

Background and Objectives: Salinity is one of the major constraints prevailing in the environment that affects not only plant growth but also agriculture productivity and soil fertility. Salinity stress causes nutritional and hormonal imbalance, ion toxicity, oxidative and osmotic stress and increase susceptibility of plant to diseases. In this regard, research has shown that salicylic acid causes resistance in plants to environmental stresses, including salinity. Nitrogen also has a direct effect on plant yield due to its significant role in plant establishment and photosynthetic and physiological abilities.
Materials and Methods: In order to investigate the effects of salicylic acid and nitrogen fertilizer application rates at different salinity levels on growth of wheat cv. Morvarid, an experiment was conducted as a split plot factorial based on a randomized complete block design with four replications in the fields of Mazraeh-E-Nemooneh located in Anbarolum, Aq Qala city, Golestan province. The main factor included three soil salinity levels (3-4 below wheat tolerance threshold (control), 9-11and 13-15 dS/m) and sub factors included two levels of salicylic acid (0 and 1.5 mM) and three levels of nitrogen fertilizer (urea) included 30% N less than soil test recommendation, N based on soil test recommendation and 30% N more than soil test recommendation, respectively. Salicylic acid was foliar applied twice at 2 weeks intervals in the tillering stage. Nitrogen treatments were applied in three stages- before planting and twice as top dressing at the tillering and stem elongation stages. Plant dry weight and height, grain yield, number of spike, number of grains per spike, thousand seed weight and spike length were measured.
Results: The results showed that the effect of different levels of salinity on yield and its components were significant. With increasing the salinity, yield and yield components decreased (p≤0.01). However, yield and yield components increased as N fertilizer consumption increased (p≤0.01). So that the highest grain yield was in the +30% of soil test recommendation treatment (N3), which was significantly different from the other levels. Application of calicylic acid increased all parameters of yield and its components except for number of grains per spike and spike length (p≤0.01). The interactive effect of salinity and nitrogen showed that application of N fertilizer more than the soil test recommendation level up to moderate salinity level (9-11 dS/m) was increased yield and yield components but at high salinity level (13-15 dS/m) reduced these traits. Also, nitrogen application with salicylic acid improved these traits under low and moderate saline conditions, but could not have a significant effect on them at high salinity level.
Conclusion: Therefore, the application of salicylic acid and nitrogen fertilizer management to some extent alleviated the adverse effects of salinity up to moderate salinity levels and improved plant growth and yield by increasing plant tolerance to salinity. At high salinity condition, it is better to reduce the use of nitrogen fertilizer.

کلیدواژه‌ها [English]

  • Fertilizer management
  • Plant growth regulator
  • Salinity stress
  • Wheat
1.Abdou, M., and Mohamed, M.A.H.2014. Effect of plant compost, salicylic and ascorbic acids on Mentha piperita
L. plants. Biological Agriculture and Horticulture. 30: 2. 131-143.
2.Akbarimoghaddam, H., Galavi, M., Ghanbari, A., and Panjehkeh, N.2011. Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences.9: 1. 43-50.
3.Akhtar, J., Ahmad, R., Ashraf, M.Y., Tanveer, A., Waraich, E.A., and Oraby, H. 2013. Influence of exogenous application of salicylic acid on salt-stressed mang Bean (Vigna radiate): growth and nitrogen metabolism. Pakistan Journal of Botany. 45:
4.Akhtar, M., Faqir, H., Ashraf, M.Y., Qureshi, T.M., Akhtar, J., and Awan, A.R. 2012. Influence of salinity on nitrogen transformations in soil. Communications in Soil Science and Plant Analysis.43: 12. 1674-1683.
5.Alizadeh, P., and Soltani, A. 2017. Simulation of soil nitrogen balance in wheat (Triticum aestivum L.) production in Gorgan, Iran. Iranian Journal of Crop Sciences. 18: 3. 218-231. (In Persian)
6.Allwood, J.W., Chandra, S., Xu, Y., Dunn, W.B., Correa, E., Hopkins, L., Goodacre. R., Tobin, A.K., and Bowsher, C.G. 2015. Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry.
7.Arfan, M., Athar, H.R., and Ashraf, M. 2007. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology. 164: 6. 685-694.
8.Ashraf, M., Akram, N.A., Arteca, R.N., and M. Foolad, R. 2010. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Science.29: 162-190.
9.Bremner, J.M., and Mulvaney, C.S. 1982. Nitrogen-total. P 595-624, In: A.L. Page, R.H. Miller and D.R. Keeney (eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties, American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin.
10.Esmaili, E., Homaei, M., and Malakouti, M.J. 2005. Interactive effect of salinity and nitrogen fertilizers on growth and composition of sorghum. Iranian Journal of soil and Waters Sciences. 19: 1. 131-146. (In Persian)
11.Esmaili, E., Kapourchal, S.A., Malakouti, M.J., and Homaee, M. 2008. Interactive effect of salinity and two nitrogen fertilizers on growth and composition of sorghum. Plant Soil and Envrionment. 54: 12. 537-546.
12.Farhangian Kashani, S., and Monem, R. 2010. Effect of salt stress on seed germination characters of ten st.johns wort (Hypericum perforatum L.) genotypes. Journal of Crop Production Research. 2: 1. 75-81. (In Persian)
13.Gee, G.W., and Bauder, J.W. 1986. Particle-Size Analysis. P 383-411,In: A. Klute, )ed.(, Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, American society of agronomy/soil science society of America, Madison, USA.
14.Ghollar-Atta, M., Raeesi, F., and Nadian, H. 2008. Salinity and phosphorus interaction on growth,yield and nutrient uptake by berseem clover (Trifolium alexandrinum L.). Iranian Journal of Field Crops Research 6: 117-126. (In Persian)
15.Ghorbani, M.H., and Basiri, M. 2012. Plant density effect on growth and seed yield of wheat in saline soils and rainfed condition. Electronic Journal of Plant Production. 6: 2. 57-72. (In Persian)
16.Ghorbani Javid, M., Sorooshzadeh, A., Moradi, F., Modarre-Sanavy, S.A.M., and Allahdadi, I. 2011. The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Crop Science. 5: 6. 726-734.
17.Hamid, M., Khalil‐ur‐Rehman and Ashraf, M.Y. 2010. Salicylic acid–induced growth and biochemical changes in salt‐stressed wheat. Communications in Soil Science and Plant Analysis. 41: 4. 373-389.
18.Hashemi, S.E., Emam, Y., and Pirasteh Anosheh, H. 2015. The effect of time and type of salicylic acid application on growth trend, yield and yield components of barley (Hordeum vulgare L.) under salinity tension conditions. Crop Physiology Journal. 6: 24. 5-18. (In Persian)
19.Heidari, M., Bakhshandeh, A., Nadeyan, H., Fathi, G., and Alemisaeid, Kh. 2006. Effects of salinity and nitrogen rates on seed yield, osmotic adjustment and sodium and potassium uptake in Chamran wheat cultivar. Iranian Journal of Agriculture Science. 3: 513-501.(In Persian)
20.Heravi, M. 2009. The effects of salinity on seedling growth rate and physiological characteristics of different wheat varieties. Master’s thesis Shahid Bahonar University, 31p. (In Persian)
21.Homaei, M. 2002. Plant response to salinity. The Iranian National Committee on Irrigation and Drainage Publications, 88p. (In Persian)
22.Jackson, M.L. 1967. Soil Chemical Analysis, Prentice Hall of India Private Limited, New Delhi. 205p.
23.Kiarostami, Kh., Abdolmaleki, N., and Heidari, M. 2012. The effect of salicylic acid on salt stress reduction in canola (Brassica napus L.). Journal of Plant Biology. 4: 12. 69-82. (In Persian)
24.Klessig, D.F., Choi, H.W., and Dempsey, D.A. 2018. Systemic acquired resistance and salicylic acid: past, present, and future. Molecular Plant-Microbe Interactions. 31: 9. 871-888.
25.Knudsen, D., Peterson, G.A., and Partt, P.F. 1982. Lithium, sodium and potassium. P 403-429, In: A.L. Page, (ed.), Methods of soil analysis. Part 2. 2nded. ASA and SSSA, No 9, Madison, WI.
26.Lauchi, A., and Grattan, S. 2007. Plant growth and development under salinity stress. P 1-32, In: M.A. Jenks,, P.M. Hasegawa and S.M. Jain (eds.), Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht.
27.Loeppert, R.H., and Suarez, D.L. 1996. Carbonate and gypsum. P 437-474,In: D.L. Sparks, (ed.), Methods of Soil Analysis, Part 3. Chemical methods. American society of agronomy/soil science society of America, Madison, WI.
28.Machado, R.M.A., and Serralheiro, R.P. 2017. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulture. 3: 30. 1-13.
29.Milani, P.M., Malakouti, M.J., Khademi, Z., Balali, M.R., and Mashayekhi, M. 1998. A fertilizer recommendation model for the wheat field of Iran. Soil and Water Research Institute, Tehran, Iran, 98p. (In Persian)
30.Munns, R. 2005. Genes and salt tolerance: bringing them together. New phytologist. 167: 3. 645-663.
31.Nelson, D.W., and Sommers, L.E. 1996. Total carbon, organic carbon, and organic matter. P 961-1010, In: A.L. Page  (ed.), Methods of Soil Analysis. Part 2. Chemical and microbiological properties 2nd Edition. Agronomy Series No. 9, ASA SSSA, Madison.
32.Noreen, S., and Ashraf, M. 2010. Modulation of salt (NaCl)‐induced effects on oil composition and fatty acid profile of sunflower (Helianthus annuus L.) by exogenous application of salicylic acid. Journal of the Science of Food and Agriculture. 90: 15. 2608-2616.
33.Olsen, S.R., Cole, C.V., Watanabe, F.S., and Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular, Washington, DC: US Department of Agriculture, 939: 19p.
34.Parida, A.K., and Das, A.B. 2005.Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety. 60:3. 324-349.
35.Pirasteh-Anosheh, H., Emam ,Y., and Sepaskhah, A.R. 2015. Improving barley performance by proper foliar applied salicylic-acid under saline conditions. International Journal of Plant Production. 9: 3. 467-486.
36.Poshtdar, A., Abdali Mashhadi, A.R., Moradi, F., Siadat, S.A., and Bakhshandeh, A. 2018. Effects of salicylic acid and nitrogen application on biochemistry, qualitative and quantitative yield of peppermint (Mentha piperita L.). Iranian Journal
of Medicinal and Aromatic Plants. 34: 2. 309-329. (In Persian)
37.Saffari, D. 2019. The effect of salicylic acid foliar application on yield and yield components of sunflower under salinity stress. Applied Research of Plant Ecophysiology. 5: 2. 175-159. (In Persian)
38.Sawada, H., Shim, I.S., and Usui,K. 2006. Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis-modulation by salt stress in rice seedlings. Plant Science.171: 2. 263-270.
39.Soares, L.H., Dourado-Neto, D.,Binotto Fagan, B., Teixeira, W.F., and Sabrina-Pereira, I. 2017. Physiological, phenometric and productive changes in soyabean crop due to the use of Kinetin. Pesquisa Agropecuária Tropical. 47: 1. 79-86.
40.Tavasolee, A., Khavazi, K., Monirifar, H., Besharati, H., Mirfakhraei, N., Shamshirpour, M., and Zamani, S. 2017. Assessing the yield and growth characteristics of alfalfa ecotypes in soil salinity condition by inoculation of Sinorhizobium Meliloti salt resistant strains. Agricultural Science and Sustainable Production. 26: 4. 63-79.
41.Xu, C., and Mou, B. 2016. Responses of spinach to salinity and nutrient deficiency in growth, physiology, and nutritional value. Journal of the American Society for Horticultural Science. 141: 12-21.
42.Yavas, I., and Unay, A. 2016. Effects of zinc and salicylic acid on wheat under drought stress. The Journal of Animal and Plant Sciences, 26: 4. 1012-101.
43.Youssef, R.A., El-Azab, M.E.,Mahdy, H.A.A., Essa, E.M., and Mohammed, K.A.S. 2017. Effect of salicylic acid on growth, yield, nutritional status and physiological properties of sunflower plant under salinity stress. International Journal of Pharmaceutical and Phytopharmacological Research. 7: 5. 54-58.