1.Karamian, M., and Hosseini, V. 2016. Effect of trees canopy and topography on some chemical properties of forest soil (Case Study: The forest of Ilam province, Dalab). Journal of Natural Ecosystems of Iran. 7: 1. 81-97. (In Persian)
2.Notaro, K.A., Medeiros, E.V.D., Duda, G.P., Moreira, K.A., Barros, J.A.D., Santos, U.J.D., Lima, J.R.D.S., and Moraes, W.D.S. 2018. Enzymatic activity, microbial biomass, and organic carbon of Entisols from Brazilian tropical dry forest and annual and perennial crops. Chilean Journal of Agricultural Research. 78: 1. 68-77.
3.Beheshti, A., Raiesi, F., and Golchin, A. 2012. Soil properties, C fractions and their dynamics inland use conversion from native forests to croplands in northern Iran. Agric Ecosyst Environ. 148: 121-133.
4.Karmakar, R., Das, I., Dutta, D., and Rakshit, A. 2016. Potential effects of climate change on soilproperties, a review. Science International. 4: 51-73.
5.Shekofteh, H., Masoudi, A., and Shafiei, S. 2018. The effect of different land uses on some indicators of physical, chemical and biological quality of soil. Journal of Soil and Water Sciences. 22: 3. 425-436. (In Persian)
6.Weil, R.R., Islam, K.R., Stine, M.A., Gruver, J.B., and Samson-Liebig, S.E. 2003. Estimating active carbon for
soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture. 18: 1. 3-17.
7.Blanco, J.A. 2018. Managing Forest soils for carbon sequestration: insights from modeling forests around the globe.
P 237-252. In: Muñoz, M.Á., Zornoza, R. (ed), Soil Management and Climate Change. Elsevier Inc, New York. https://doi.org/ 10.1016/B978-0-12- 812128-3.00016-1.
8.Bünemann, E.K., Bongiorno, G., Bai, Z., Creamer, R.E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T.W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J.W., and Brussaard, L. 2018. Soil quality – A critical
review. Soil Biology and Biochemistry. 120: 105-125. https://doi.org/10.1016/ j.soilbio.2018.01.030.
9.Dai, L., Ge, J., Wang, L., Zhang, Q., Liang, T., Bolan, N., Lischeid, G., and Rinklebe, J. 2022. Influence of soil properties, topography, and land cover on soil organic carbon and total nitrogen concentration: A case study in Qinghai-Tibet plateau based on random forest regression and structural equation modeling. Science of the Total Environment,
821: 153440. https://doi.org/
10.1016/ j.scitotenv.2022.153440.
10.Singh, G., Mishra, D., Singh, K., Shukla, S., and Choudhary, G.R. 2022. Geographical settings and tree diversity influenced soil carbon storage in different forest types in Rajasthan, India. Catena 209: 105856. https://doi.org/ 10.1016/j.catena.2021.105856.
11.Gebeyehu, G., Soromessa, T., Bekele, T., and Teketay, D. 2019. Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia. Journal of Ecology and Environment. 43: 1. 1-18.
12.Vieira, S.A., Alves, L.F., Duarte‐Neto, P.J., Martins, S.C., Veiga, L.G., Scaranello, M.A., Picollo, M.C., Camargo, P.B., do Carmo, J.B., Neto, E.S., and Santos, F.A. 2011. Stocks of carbon and nitrogen and partitioning between above‐and belowground pools in the Brazilian coastal Atlantic Forest elevation range. Ecology and Evolution. 1: 3. 421-434.
13.Dieleman, W.I., Venter, M., Ramachandra, A., Krockenberger, A.K., and Bird, M.I. 2013. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma. 204: 59-67. https:// doi.org/
10.1016/j.geoderma. 2013. 04. 005.
14.Dinakaran, J., Chandra, A., Chamoli, K.P., Deka, J., and Rao, K.S. 2018. Soil organic carbon stabilization changes with an altitude gradient of land cover types in central Himalaya, India. Catena. 170: 374-385. https://doi.org/10.1016/ j.catena.2018.06.039.
15.Banday, M., Bhardwaj, D.R., and Pala, N.A. 2019. Influence of forest type, altitude and NDVI on soil properties in forests of North Western Himalaya, India. Acta Ecologica Sinica. 39: 1. 50-55.
16.Zhang, Y., Ai, J., Sun, Q., Li, Z., Hou, L., Song, L., Tang, G., Li, L., and Shao, G. 2021. Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. Catena. 196: 104872. https://doi.org/10.1016/ j.catena.2020.104872.
17.Gessler, P.E., Chadwick, O.A., Chamran, F., Althouse, L., and Holmes, K. 2000. Modelisoil-landscape and ecosystemproperties using terrain attributes. Soil Science Society America Journal. 64: 2046-2056.
18.Pachepsky, Y.A., Timlin, D.J., and Rawls, W.J. 2001. Soil water retention as related to topographic variables. Soil Science Society America Journal. 65: 1787-1795.
19.Praeg, N., Seeber, J., Leitinger, G., Tasser, E., Newesely, C., Tappeiner, U., and Illmer, P. 2020. The role of land management and elevation in shaping soil microbial communities: Insights from the Central European Alps. Soil Biology and Biochemistry. 150: 107951.
https://doi.org/10.1016/ j.soilbio. 2020. 107951.
20.Wildung, R.E., and Garland, T.R. 1988. Soils/carbon and mineral cycling processes. P 23-59, In: Rickard, W.H., Rogers, L.E., Vaughan, B.E., Liebetrau, S.F. (ed.). Shrub-Steppe Balance and Change in a Semi-Arid Terrestrial Ecosystem, Developments in Agricultural and Managed Forest Ecology. Elsevier, New York.
21.Simon, A., Dhendup, K., Rai, P.B., and Gratzer, G. 2018. Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests. Geoderma Regional. 12: 28-38.
22.Song, X.D., Liu, F., Wu, H.Y., Cao, Q., Zhong, C., Yang, J.L., Li, D.C., Zhao, Y.G., and Zhang, G.L. 2020. Effects of long-term K fertilization on soil available potassium in East China. Catena. 188: 104412.
https://doi.org/ 10.1016/j.catena.2019.104412.
24.Hattar, B.I., Taimeh, A.Y., and Ziadat, F.M. 2010. Variation in soil chemical properties along toposequences in
an arid region of the Levant. Catena, 83: 1. 34-45.
25.Rezaei, H., Jafarzadeh, A., Alijanpour, A., Shahbazi, F., and Valizadeh Kamran, K. 2020. Soil Organic Matter Condition in Forest Stands of Arasbaran. Water and Soil. 34: 1. 115-127. (In Persian)
27.Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science. 37: 1. 29-38.
28.Carter, M.R., and Gregorich, E.G. 2008. Soil Sampling and Methods of Analysis. P 823-1224, In: Carter, M.R., Gregorich, E.G., (ed.). CRC Press: Boca Raton, FLorida, USA.
29.Goh, T.B., Arnaud, R.J., and Mermut, A.R. 1993. Aggregate stability to water. P 177-180, In: Carter, M.R. (ed.). Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis Publishers, Boca Raton.
30.Bower, C.A., Reitemeier, F., and Fireman, M. 1952. Exchangeable cation analysis of saline and alkali. Soil Science. 73: 4. 251-262.
31.Olsen, S.R., and Sommmers, L.E. 1982. Phosphorus. P 403-430, In: Miller, A.L. (ed.). Methods of soil analysis, part 2. Chemical and mineralogical properties. Agronomy series, Soil Science Society of America, Madison, Wisconsin, USA.
32.Philip, A.H., and Sparks, D.L. 1996. Lithium, Sodium, Potassium, Rubidium and Cesium. P 551-574, In: Sparks, D.L. (ed.). Methods of soil analysis. part 3, chemical methods, Madison, Wisconsin, USA.
33.Adesodun, J.K., Mbagwu, J.S.C., and Oti, N. 2001. Structural stability and carbohydrate contents of an ultisol under different management systems. Soil and Tillage Research. 60: 135-142.
34.Gee, G.W., and Or, D. 2002. Particle size analysis. P 255-293, In: Dane, J.H. and G.C. Topp. (ed.). Methods
of Soil Analysis. Part 4. Physical Methods. Soil Science Society of America, Madison, Wisconsin, USA.
35.Blake, G.R., and Hartge, K.H. 1986. Bulk density. P 363-375, In: Klute, A. (ed.). Methods of soil analysis. Part 1, Physical and mineralogical methods. Soil Science Society of America, Madison, Wisconsin, USA.
36.Smith, J.L., Halvorson, J.J., and Bolton Jr, H. 2002. Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment. Soil Biology and Biochemistry. 34: 11. 1749-1757.
37.Yang, Y., Mohammat, A., Feng, J., Zhou, R., and Fang, J. 2007. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry. 84: 2. 131-141.
38.Deng, L., Liu, G.B., and Shangguan, Z.P. 2014. Land‐use conversion and changing soil carbon stocks in China's ‘Grain‐for‐Green’Program: a synthesis. Global Change Biology. 20: 11. 3544-3556.
39.Li, P., Wang, Q., Endo, T., Zhao, X., and Kakubari, Y. 2010. Soil organic carbon stock is closely related to aboveground vegetation properties in cold-temperate mountainous forests. Geoderma. 154: 3-4. 407-415.
40.Njeru, C.M., Ekesi, S., Mohamed, S.A., Kinyamario, J.I., Kiboi, S., and Maeda, E.E. 2017. Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem. Geoderma Regional. 10: 29-38.
41.Heckman, K., Welty-Bernard, A., Rasmussen, C., and Schwartz, E. 2009. Geologic controls of soil carbon cycling and microbial dynamics in temperate conifer forests. Chemical Geology. 267: 1-2. 12-23.
42.Rowlings, D.W., Grace, P.R., Kiese, R., and Weier, K.L. 2012. Environmental factors controlling temporal and spatial variability in the soil‐atmosphere exchange of CO2, CH4 and N2O from an Australian subtropical rainforest. Global Change Biology. 18: 2. 726-738.
43.Qin, Y., Feng, Q., Holden, N.M., and Cao, J. 2016. Variation in soil organic carbon by slope aspect in the middle of the Qilian Mountains in the upper Heihe River Basin, China. Catena. 147: 308-314.
44.Dinakaran, J., and Krishnayya, N.S.R. 2010. Variations in soil organic carbon and litter decomposition across different tropical vegetal covers. Current Science. 99: 8. 1051-1060.
45.Liu, J., Wang, Z., Hu, F., Xu, C., Ma, R., and Zhao, S. 2020. Soil organic matter and silt contents determine soil particle surface electrochemical properties across a long-term natural restoration grassland. Catena. 190: 104526.
https:// doi.org/10.1016/j.catena.2020.104526.
46.Zhao, Z., Chang, E., Lai, P., Dong, Y., Xu, R., Fang, D., and Jiang, J. 2019. Evolution of soil surface charge in a chronosequence of paddy soil derived from Alfisol. Soil and Tillage Research. 192: 144-150.
47.Bolan, N.S., Naidu, R., Syers, J.K., and Tillman, R.W. 1999. Surface charge and solute interactions in soils. Advances in agronomy 67: 87-140.
48.Alijanpour, A., Fatullahi, A., Eshaghi Rad, J., and Mohamed, A.R. 2018. Effect of aspect and soil on quantitative and qualitative characteristic of hornbeam (Carpinus betulus L.) in Arasbaran forest (case study: Ilginehchay and Kaleibarchay Watersheds). Journal of Plant Research (Iranian Journal of Biology). 30: 4. 887-898. (In Persian)
49.Sharma, V., and Sharma, K.N. 2013. Influence of accompanying anions on potassium retention and leaching in potato growing alluvial soils. Pedosphere, 23: 4. 464-471.
50.Mirzaei Varoei, M., Fekri, M., and Mahmoudabadi, M. 2016. Effects of moisture regime, sodium and calcium on the deep distribution of potassium in a gypsum soil. Journal of Soil and Water Conservation Research. 23: 4. 81-65. (In Persian)
51.Spohn, M., and Giani, L. 2010. Water-stable aggregates, glomalin-related soil protein, and carbohydrates in a chronosequence of sandy hydromorphic soils. Soil Biology and Biochemistry. 42: 9. 1505-1511.
52.Bongiovanni, M.D., and Lobartini, J.C. 2006. Particulate organic matter, carbohydrate, humic acid contents in soil macro-and microaggregates as affected by cultivation. Geoderma. 136: 3-4. 660-665.