ارزیابی اثر کاربرد سطوح مختلف کلرید پتاسیم بر برخی ویژگی های رویشی و غلظت پتاسیم در گیاه کینوا

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری ،گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 دانشجوی دکتری ، گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

سابقه و هدف: پتاسیم یکی از عناصر پرمصرف ضروری برای رشد گیاهان است که نه تنها از نظر مقدار بلکه از لحاظ فیزیولوژیکی و زیست‌شیمیایی نیز از مهم‌ترین کاتیون‌ها در گیاهان محسوب می‌شود. بنابراین، اطلاع از حد بهینه این عنصر در خاک و پاسخ‌های گیاهی به کاربرد مقادیر مختلف آن می‌تواند کمک موثری در توصیه بهینه کودی این عنصر غذایی داشته باشد. این پژوهش با هدف بررسی تاثیر سطوح مختلف کلرید پتاسیم بر عملکرد و غلظت پتاسیم در گیاه کینوا (Chenopodium quinoa Willd) انجام شد.
مواد و روش‌ها: خاک با کمبود پتاسیم قابل استفاده، از عمق 30-0 سانتی‌متری مزارع کشاورزی روستای تقرتپه در 20 کیلومتری شرقی شهرگرگان تهیه شد. برای دستیابی به اهداف این پژوهش، آزمایشی به صورت طرح کاملاً تصادفی در سه تکرار و با 11 تیمار و در مجموع با 33 گلدان در گلخانه دانشگاه علوم کشاورزی و منایع طبیعی گرگان به اجرا درآمد. تیمارهای کودی شامل 0، 20، 40، 60، 80، 100، 120، 140، 160، 180 و 200 میلی‌گرم پتاسیم بر کیلوگرم خاک و پتاسیم از منبع کلرید پتاسیم به خاک گلدان‌های پنج کیلویی اعمال و تعداد 6 عدد بذر کینوا (رقم تی‌تی‌کاکا) درعمق 2 سانتی متری کشت گردید. دو هفته پس از سبز شدن گیاهان تعداد بوته‌ها به دو عدد تقلیل یافت. گلدان‌های کشت شده به مدت 8 هفته در رطوبت حدود ظرفیت مزرعه به روش وزنی نگهداری شدند. سپس وزن تر و خشک اندام هوایی، شاخص کلروفیل برگ بالایی و پایینی، غلظت و جذب پتاسیم اندام هوایی و پتاسیم قابل استفاده گیاه به روش عصاره‌گیری با استات آمونیوم نرمال اندازگیری شد.
یافته‌ها: بر پایه نتایج به‌دست آمده، اثر سطوح مختلف پتاسیم بر تمام صفات مورد مطالعه در سطح احتمال یک درصد معنی‌دار شد. نتایج نشان داد که بیشترین غلظت و جذب پتاسیم اندام هوایی به ترتیب با میانگین 35/1 و 85/2 درصد مربوط به تیمار 60 و 100 میلی‌گرم بر کیلوگرم مصرف کلرید پتاسیم و کمترین مقدار به‌ترتیب با میانگین 89/0 و 70/0 درصد مربوط به تیمار شاهد بود. همچنین بین پتاسیم عصاره‌گیری شده توسط استات آمونیوم نرمال و شاخص‌های گیاهی همبستگی ضعیف و غیرمعنی‌دار مشاهده گردید. از آنجایی که غالب خاک‌های استان گلستان دارای منشا لسی می‌باشند و در بیشتر خاک‌ها لسی کانی ایلیت غالب بوده و یا درصد زیادی از این خاک‌ها را شامل می‌شود، استفاده از استات آمونیوم نرمال برای عصاره‌گیری پتاسیم تبادلی، کارآیی بالایی در اندازه‌گیری مقدار واقعی پتاسیمی که به آسانی برای گیاه قابل دسترس باشد، نخواهد داشت.
نتیجه‌گیری: نتایج این پژوهش نشان می‌دهد که تیمار 60 و 100 میلی‌گرم بر کیلوگرم کلراید پتاسیم به ترتیب باعث بدست آمدن بالاترین غلظت پتاسیم، جذب پتاسیم و شاخص کلروفیل برگ شد. در عین حال افزایش بیش از 100 میلی‌گرم بر کیلوگرم مصرف کلرید پتاسیم نتوانست تغییر معنی‌داری در صفات مورد بررسی از جمله غلظت پتاسیم ایجاد نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the effect of application of different levels of potassium chloride on some growth characteristics and potassium concentration in quinoa

نویسندگان [English]

  • TALEB NAZARI 1
  • Narges sousaraee 2
  • Mojtaba Baranimotlagh 3
1 PhD student, Dept. of Soil Science, Faculty of Water and Soil Engin., Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Dept. of Soil Science ,Gorgan University of Agricultural Sciences and Natural Resources
3 Member of scientific board
چکیده [English]

Background and objectives: Potassium (K) is one of the most crucial nutrients for plant growth, not only quantity but also in terms of physiologically and biochemically; it is one of the most essential cations in plants. Therefore, knowing about the optimal level of this element in the soil, as well as plant responses to different amounts, can be an effective aid in the optimal fertilizer recommendation of this nutrient. Therefore, this study was conducted to investigate the effect of different levels of potassium chloride on yield and potassium concentration in quinoa (Chenopodium quinoa Willd).
Material and methods: Potassium-deficient soil was obtained from a depth of 0-30 cm in the agricultural fields of Taqar Tappeh village, 20 km East of Gorgan. To achieve the objectives of this study, an experiment was conducted in a completely randomized design with three replications and 11 treatments, and a total of 33 pots in the greenhouse of Gorgan University of Agricultural Sciences and Natural Resources. Fertilizer treatments including 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, and 200 mg/kg of potassium of soil and potassium from potassium chloride source are applied to the soil of 5 kg pots, and 6 quinoa seeds (Titicaca cultivar) was planted at a depth of 2 cm. Two weeks after the plants sprouted, the number of plants was reduced to two. Cultivated pots were maintained for 8 weeks at the field capacity by weight method. Then fresh and dry shoot weight, upper and lower leaf SPAD, shoot potassium concentration and uptake and, available potassium plant was measured by extraction method with normal ammonium acetate.
Results: Based on the results, the effect of different rates of potassium on all studied traits was significant at the level of 1% probability. The results showed that the highest concentration and uptake of potassium by shoots with an average of 1.35 and 2.85% were related to the treatment of 60 and 100 mg/kg potassium chloride, and the lowest values with an average of 0.89 and 0.07% were related to the control treatment, respectively. A weak and non-significant correlation was observed between potassium extracted with normal ammonium acetate and plant indices. Since most of the soils of Golestan province are of loess origin and in most soils loess is the predominant mineral or contains a large percentage of these soils, the use of normal ammonium acetate for extraction of exchangeable potassium, high efficiency in measuring the actual amount of potassium which will not be easily accessible to the plant
Conclusion: The results of this study showed that treatment of 60 and 100 mg/kg potassium chloride resulted in the highest concentration of potassium, uptake of potassium, and leaf SPAD respectively. At the same time, increasing more than 100 mg/kg of potassium chloride consumption could not cause a significant change in the studied traits, including potassium concentration.

کلیدواژه‌ها [English]

  • loess soils
  • Normal Ammonium Acetate
  • SPAD
1.Amiryusefi, M., Tadayon, M.R., and Ebrahimi, R. 2020. The effect of bio-chemical fertilizers on some physiological characteristics, yield components and yield of quinoa plant. Esfahan, Journal of Production and Processing of Crop
and Horticultural Products. 10: 2. 1-17. (In Persian)
2.Abugoch, L., Castro, E., Tapia, C., Anon, M.C., Gajardo, P., and Villarroel, A. 2009. Stability of Quinoa Flour Proteins (Chenopodium quinoa Willd.) During Storage, Journal of Food Science and technology. 44: 10. 2013-2020.
3.Ceccato, D.V., Daniel Bertero H., and Batlla, H. 2011. Environmental control of dormancy in quinoa (Chenopodium quinoa) seeds: two potential genetic resources for pre-harvest sprouting tolerance. Seed Science Research. 21: 133-141.
4.Jacobsen, S.E., Hollington, P.A., Hussain, Z. 2002. Quinoa (Chenopodium quinoa Willd.), a potential new crop for Pakistan. In Prospects for Saline Agriculture. Springer, Dordrecht. pp. 247-249.
5.Madani, H., Hosseinkhani, R., and Sajedi, N. 2009. Effect of different level of potassium sulfate and zeolit on yield and yield component of potato in Arak region, New Finding in Agriculture, 4: 1. 38-49. (In Persian)
6.Wang, M., Zheng, Q., Shen, Q., and Guo, Sh. 2013. The critical role of potassium in plant stress response. International Journal of Molecular Sciences. 14: 7370-7390.
7.Bednarz, C.W., and Oosterhuis, D.M. 1999. Physiological changes associated with potassium deficiency in cotton. Journal of Plant Nutrition. 22: 303-313.
8.Hu, Y., and Schmidhalter, U. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168: 541-549.
9.Cakmak, I. 2005. K alleviates detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Sciences. 168: 4. 521-30.
10.Yuncai, H., and Schmidhalter, U. 2005. Drought and salinity: A comparison of the effects of drought and salinity. Journal of Plant Nutrition and Soil Science. 168: 541-549.
11.Azizabadi, E., Golchin, A., and Delavar, M.A. 2014. Effect of potassium and drought stress on growth indices and mineral content of safflower leaf. Journal of Soil and Plant Interactions-Isfahan University of Technology, 5: 3. 65-80.
12.Fathy, M.F., Motagally, A., and Attia, K.K. 2009. Response of Sugar Beet Plants to Nitrogen and Potassium Fertilization in Sandy Calcareous Soil. International Journal of Agriculture and Biology, 11: 695-700.
13.Egilla, N., Davies, F.T., and Boutton, T.W. 2005. Drought stress influences leaf water content, photosynthesis, and water use efficiency of Hibiscus rosa - sinensis at three potassium concen trations. Photosynthetica, 43: 1. 135-140.
14.Abgad, N.P., Kuchanwar, O.D., Shirsat, P.R., Ingle, S.N., and Zalte, S.G. 2015. Effect of phosphorus and potassium levels on yield and quality of spinach. Asian Journal of Soil Science, 10: 2. 248-251.
15.Kaya, C., Ashraf, M., Dikilitas, M., and Atilla, L. 2013. Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indole-3-acetic acid (IAA) and inorganic nutrients - A field trial. Australian Journal of Crop Science, 72: 249-254.
16.Scanlin, L., and Lewis, K.A. 2017. Quinoa as a sustainable protein source: Production, nutrition, and processing. In Sustainable protein sources. Academic Press. pp. 223-238.
17.Bar-Yosef, B., Magen, H., Johnston, A.E., and Kirkby, E.A. 2015. Potassium fertilization: Paradox or K management dilemma. Renewable Agriculture and Food Systems, 30: 2. 115-119.
18.Li, S., Duan, Y., Guo, T., Zhang, P., He, P., Johnston, A., and Shcherbakov, A. 2015. Potassium management in potato production in Northwest region of China. Field Crops Research, 174: 48-54.
19.Fathi, S., Samadi, A., Davari, M., and Asadi Kapourchal, S. 2014. Evaluating different extractants for determining corn available potassium in some calcareous soils of Kurdistan province. Cereal Research. 4: 3. 253-266. (In Persian)
20.Khodshenas, M., Ghadbeyklou, J., and Dadivar, M. 2021. Evaluation of chemical extractants and determination of the potassium critical level in soils under the bean cultivation. Iranian Journal of Soil Research, 34: 4. 451-463.
21.Armesto, B.R., and Sotres, F.G. 1993. Estimation of soil solution K in Galicia. Agrochimica, 37: 1-2. 172-178.
22.Geem, G.H., and Bauder, J.W. 1986. Particle size analysis. P 383-409. In: A. Klute (ed), Methods of Soil Analysis. Part 2, Physical properties. Soil Science Society of America, Madison, WI.
23.Jackosn, M.L. 1973. Soil Chemical Analysis. Prentice Halla of India Private Limited. New Delhi, India.
24.Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. 37: 1. 29-38.
25.Bremner, J.M., and Mulvaney, C.S. 1982. Nitrogen total. P 595-624. In: A.L. Page, R.H. Miller and D.R. Keeney (eds.). Methods of soil analysis. Part 2. Chemical and microbiological properties, American Society of Agronomy, Soil Science Society of America, Madison. WI.
26.Olsen, S.R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture; Washington.
27.Black, C.A. 1993. Soil Fertility Evaluation and Control. Lewis Pub., London, UK. 547p.
28.Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper.
Soil Science Society of America Journal. 42: 3. 421-428.
29.Jones, Jr.J.B., and Case, V.W. 1990. Sampling, handling and analyzing plant tissue samples. Sampling, handling and analyzing plant tissue samples, (ed. 3). pp. 389-427.
30.Berg Marlene, G., and Hugh Gardner, E. 1978. Methods of soil analysis used in the soil testing laboratory at Oregon State University. Corvallis, Or. Agricultural Experiment Station, Oregon State University. 89: 4. 16.
31.Gomes-Sanchez, D., Vannozzi, G.P., Baldini, M., Tahamasebi Enferadi, S., and Dell Vedove, G. 2000. Effect of soil water availability in sunflower lines derived from interspecific crosses. Italian Joumnal of Agronomy. pp. 371-387.
32.Motesharezadeh, B., Vatanara, F., and Savaghebi, G.R. 2015. Effect of potassium and zinc on some responses of wheat (Triticum aestivum L.) under salinity stress. Iranian Journal of Soil Research. 29: 3. 243-258. (In Persian)
33.Kholadbarin, B., and Islamzadeh, T. 2005. Mineral nutrition of excellent plants (translation). Shiraz Univorsti Press, 500p. (In Persian)
34.Zahedi, S., Rasouli, F., and Gohari, Gh.R. 2017. Effect of potassium on grain yield and concentration of some micro nutrients in cowpea (Vigna unguiculata L.) drought stress conditions. Journal of Iranian Plant Eco physiological Research, 12: 48. 25-34. (In Persian)
35.Hossein, M.M., Shaaban, M.M., and El-Saady, A.K.M. 2008. Response of cowpea plants grown under salinity stress to pk foliar applications. American Journal of Plant Physiology. 3: 2. 81-88.
36.Turcios, A.E., Papenbrock, J., and Tränkner, M. 2021. Potassium, an important element to improve water use efficiency and growth parameters in quinoa (Chenopodium quinoa) under saline conditions. Journal of Agronomy and Crop Science, 207: 4. 618-630.
37.Rego, V.M., Koetz, M., Bonfim-Silva, E.M., and Araujo da Silva, T.J. 2017. Productive characteristics of quinoa (Chenopodium quinoa Willd.) under irrigation and potassium fertilization. Australian Journal of Crop Science.11: 11. 1438-1443.
38.Schwartzkopf, C.A.R.L. 1972. Potassium, calcium, magnesium-how they relate to plant growth. USGA Green Section Record, 10: 6. l-3.
39.Degl’ Innocentia, E., Hafsib, C., Guidia, L., and Navari-Izzoa, F. 2009. The effect of salinity on photosynthetic activity in potassium-deficient barley species. Journal of plant physiology. 166: 1968-1981.
40.Yang, X.F., Bie, Z.L., and Xu, J.L. 2007. Effect of potassium supply on the growth, photosynthetic characteristics and quality of lettuce. Acta Hort. 761p.
41.Asgharipour, M.R., and Heidari, M. 2011. Effect of potassium supplyon drought resistance in sorghum: plant growth and macronutrient content. Pakistan Journal of Agricultural Sciences. 4893: 197-204.
42.Malekzadeh Shams Abad, M.R., Ismailizadeh, M., and Rusta, H.R. 2020. The Effect of Fertigation Frequency and Foliar Application of Potassium Sulfate on some Vegetative, Reproductive, Physiological Characteristics, and Nutrient Elements of Strawberry Cv. Paros in Soilless Culture System. Abu Rihan Campus Agricultural Journal. 1: 22. 165-179. (In Persian)
43.Rafierad, Z. 2017. 'The effect of different levels of potassium chloride and temperature on some physiological and biochemical characteristics of Citrus Aurantium seedlings', Journal of Soil Management and Sustainable Production, 7: 1. 101-114. (In Persian)
44.Waqas, M., Yaning, C., Iqbal, H., Shareef, M., ur Rehman, H., and Bilal, H.M. 2021. Synergistic consequences of salinity and potassium deficiency in quinoa: Linking with stomatal patterning, ionic relations and oxidative metabolism. Plant Physiology and Biochemistry, 159: 17-27.
45.Aksu, G., and Altay, H. 2020. The effects of potassium applications on drought stress in sugar beet. Sugar Tech. 22: 6. 1092-1102.
46.Bryson, G.M., Mills, H.A., Sasseville, D.N., Jones, J.B., and Barker, A.V. 2014. Plant analysis handbook IV. MicroMacro Publishing.
47.Bergmann, W. 1988. Ernahrungsstörungen bei Kulturpflanzen, Entstehung und Diagnose (2nd ed). VEB Gustav Fischer Verlag. 762p.
48.Mehrandish, M., Jami Moeini, M., and Armin, M. 2018. Effect of potassium source and application rate on qualitative characteristics of sugar beet (Beta vulgaris L. cv. Aras) under full and deficit irrigation. Journal of Plant Ecophysiology, 10: 34. 97-108. (In Persian)
49.Karam, F., Rouphael, Y., and Lahoud, R. 2009. Influence of genotypes and potassium application rates on yield and potassium use efficiency of potato. Agronomy Journal. 8: 27-32.
50.Locascio, S.J., and Saxena, G.K. 1967. Effect of potassium source and rate and nitrogen rate on strawberry tissue composition and fruit yield. Proc. Florida State Hort. Soc. 80: 173-176.
51.Hoseinpur, A.R. 2004. Evaluation of the Capability of Extractants in Determining Garlic Available K for Certain Soils in Hamadan. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science.
8: 2. 45-56. (In Persian)
52.Kavosi, M., and Kalbasi, M. 2000. Comparison of Soil Potassium Extracting Methods to Determine Suitable Extractants for Sepeedrood Rice Variety in some Guilan Rice Paddy Fields. Journal of Science and Technology of Agriculture and Natural Resources. Water and Soil Science. 3: 4. 57-71. (In Persian)
53.EL-Desuki, M., Abdel-Mouty, M.M., and Ali, A.H. 2006. Response of onion plants to additional dose of potassium application. Journal of Applied Science Research. 2: 9. 592-597.
54.Molla vali, M., Boland Nazar, P., and Tabatabai, S.J. 2011. The effect of different amounts of ammonium nitrate and potassium sulfate on the concentration of some mineral elements in edible onions. Journal of Horticultural Sciences (Food Science). 25: 1. 101-108. (In Persian)
55.Johnson, A.E., and Goulding, K.W. 1990. The use of plant and soil analysis to predict the potassium supplying capacity of soil. Development of K-Fertilizer Recommendation, 22nd Colloquium of international potassium institute. pp. 153-180.56.Yuncai, H., and Schmidhalter, U. 2005. Drought and salinity: A comparison of the effects of drought and salinity. Journal of Plant Nutrition and Soil Science. 168: 541-549.
57.Farshadi, Rad, A., Dardipour, E., Khormali, F., and Kiani, F. 2011. Potassium forms in soil and its separates in some loess and loess-like soils of Golestan providence. Gorgan, Journal of Soil and Water Conservation. 18: 3. 1-14. (In Persian)
58.Sharifi, M. 1998. Selection of suitable extractant to extract available potassium for Corn in soils of central region of Isfahan province. M.Sc. Thesis of soil science, Isfahan University of Technology, Iran. (In Persian)
59.Zaernomeli, S. 2007. Distribution of the different K pools and its relation with soil profile development and clay mineralogy in some selected soils of Golestan Province. M. Sc. Thesis in Soil Science. Soil Science Department. Gorgan University of Agricultural Sciences and Natural Resources, 110p.
60.Rouse, R.D., and Bertramson, B.R. 1950. Potassium availability in several Indiana soils: Its nature and methods of evaluation. Proceedings. Soil Science Society of America. 14: 113-123.
61.Zarabi, M., and Jalali, M. 2009. Comparison of several extractants for extraction available potassium of wheat in some soils of Hamadan province. Iranian Soil and Water Research. 2: 40. 149-155. (In Persian)
62.Ghanavati, N., Malakouti, M.J., and Hoseinpur, A.R. 2009. Correlation of Q/I parameters with some soil properties and Potassium uptake by wheat in some soils of Abyek region. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science 13: 49. 167-178. (In Persian)