ارزیابی و مدل سازی تراکم کربن آلی خاک با استفاده از داده های زمینی و سنجش از دور در دو نوع کاربری در منطقه فندوقلو استان اردبیل

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت منابع خاک دانشگاه شهرکرد، شهرکرد، ایران.

2 دانشیار گروه علوم و مهندسی خاک، دانشگاه شهرکرد، شهرکرد، ایران.

3 استادیار، گروه علوم و مهندسی خاک، دانشگاه شهرکرد، شهرکرد، ایران

4 استاد، گروه علوم و مهندسی خاک، دانشگاه ولی‌‌عصر رفسنجان، رفسنجان، ایران

چکیده

سابقه و هدف: کـربن آلـی خـاک نقـش بسـیار مهمـی در افزایش تولید محصولات کشاورزی، کاهش فرسایش خاک و کـاهش انتشار گازهای گلخانه‌ای دارد. درک بهتر از مقدار و ذخیره کربن آلی خاک برای استفاده از خاک و حفظ بهره‌وری آن مؤثر و ضروری می-باشد. مراتع گسترده منطقه فندوقلو در استان اردبیل به‌طور بالقوه می‌توانند مقادیر قابل توجهی از کربن را حفظ و ترسیب کند اما به‌دلیل افزایش جمعیت در معرض تغییر کاربری اراضی قرار دارند. چنین تنش‌هایی منجر به تخریب زمین و کاهش ترسیب کربن در برخی قسمت‌ها خواهد شد. بنابراین هدف این مطالعه شناسایی متغیرهای طبیعی مؤثر در ترسیب و تراکم کربن آلی خاک انجام شده است که می‎توان از متغیرهای شناسایی شده برای اصلاح و کاهش تخریب مراتع و اراضی زراعی در منطقه فندوقلو استفاده کرد.
مواد و روش‌ها: با استفاده از تکنیک اَبَر مکعب لاتین و متغیرهای مکانی مانند نقشه‌های خاک، کاربری اراضی و زمین‌شناسی، محل نقاط نمونه‌برداری تعیین شد. برای هر واحد کاربری (مرتع یا زراعی) 70 نمونه خاک سطحی مرکب (در کل 140 نمونه) از عمق صفر تا 15 سانتی‌متری جمع‌آوری شد. پس از آماده‌سازی نمونه‌های خاک، خصوصیات فیزیکی و شیمیایی خاک‌ها با توجه به روش‌های استاندارد اندازه‌گیری شد. مدل رقومی ارتفاعی از منطقه مورد مطالعه با استفاده از خطوط هم‌تراز نقشه توپوگرافی تشکیل و مشتقات اولیه و ثانویه ساخته شد. باندهای لندست هشت از درگاه زمین‌شناسی ایالات متحده استخراج و شاخص تفاضل نرمال شده پوشش گیاهی و نقشه حرارتی منطقه مورد مطالعه محاسبه شد. از مدل‌های رگرسیون خطی چندمتغیره و مدل شبکه عصبی مصنوعی با استفاده از داده‌های خاک، مدل رقومی ارتفاعی و مشتقات آن، شاخص تفاضل نرمال شده پوشش گیاهی و نقشه حرارتی به عنوان متغیرهای مستقل برای پیش‌بینی تراکم کربن آلی خاک استفاده شد. برای ارزیابی نتایج مدل‌ها، از ضریب تبیین و جذر میانگین مربعات خطا استفاده شد.
یافته‌ها: استفاده از مدل رگرسیون خطی چندمتغیره نشان داد که نیتروژن کل خاک، شاخص تفاضل نرمال شده پوشش گیاهی و میانگین وزنی قطر خاکدانه، 53 درصد تراکم کربن آلی خاک را در مراتع توجیه نمود در حالی که 46 درصد از تراکم کربن آلی خاک در کاربری زراعی توسط نیتروژن کل خاک و انحنای سطح توجیه گردید. نتایج آزمون تی جفتی، تفاوت معنی‌داری (01/0>P) بین تراکم کربن آلی خاک در کاربری مرتع و زراعی نشان داد. شبکه عصبی مصنوعی با آرایش 24-10-1 و تابع انتقال تانژانت سیگموییدی در لایه پنهان به-ترتیب 71 درصد و 82 درصد از تراکم کربن آلی خاک را در کاربری مرتع و زراعی توجیه نمود. جذر میانگین مربعات خطا مدل‌های رگرسیون خطی چندمتغیره برای پیش‌بینی تراکم کربن آلی خاک در کاربری مرتع و زراعی به‌ترتیب 07/1 و 04/1 بود، اما همین مقادیر در مدل شبکه عصبی مصنوعی به‌ترتیب برای کاربری مرتع و زراعی به 85/0 و 58/0 کاهش یافت. تحلیل حساسیت نشان داد که مدل شبکه عصبی مصنوعی به‌شدت به مدل رقومی ارتفاعی و رطوبت خاک در نقطه پژمردگی حساس هستند.
نتیجه‌گیری: نتیجه این مطالعه حاکی از معنی‌داری اثر پوشش ‌گیاهی و میانگین وزنی قطر خاکدانه روی ترسیب کربن در کاربری مرتع بود. نتایج شبکه‌های عصبی مصنوعی که برای شبیه‌سازی تغییرات تراکم کربن آلی خاک مورد استفاده قرار گرفت، نشان دادند که این شبکه-ها می‌توانند با شناسایی اثرات این متغیرها در ردیابی بخش مهمی از تغییرات تراکم کربن آلی خاک در کاربری‌های مرتع و زراعی موفق عمل کنند. نتایج همچنین نشان داد که توابع انتقالی به‌دست آمده توسط پارامترهای توپوگرافیکی اولیه و ثانویه برای تخمین تراکم کربن آلی خاک می‌تواند در منطقه، مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment and Modeling of Soil Organic Carbon Density using Ground Data and Remote Sensing in Two Types of Land Use in the Fandoqloo of Ardabil Province

نویسندگان [English]

  • Mehran Behtari 1
  • Mehdi Naderi Khorasgani 2
  • Ahmad Karimi 3
  • Hussien Shirani 4
1 دانشگاه شهرکرد
2 Associate Professor, Dept. of Soil Science and Engineering, University of Shahr-e-Kord
3 Assistant Professor, Dept. of Soil Science and Engineering, University of Shahr-e-Kord
4 Professor, Dept. of Soil Science and Engineering, University of Vali-e-Asr of Rafsanjan
چکیده [English]

Background and Objectives: Soil organic carbon is very important in increasing the production of agricultural products and reducing soil erosion and greenhouse gas emissions. A better understanding of the amount and storage of soil organic carbon is essential to the use of soil and maintaining its productivity. The extended pastures of Fandoqloo region in Ardabil province potentially could support and sequestrate considerable amounts of carbon but they are subjected to land use change, high population and tourism. Such tensions led to land degradation and low carbon sequestration in some parts. This study aimed to find effective natural variables on soil carbon density and sequestration. Such variables could be applied for remediation and resilience of degraded pastures and croplands in Fandoghloo region.
Materials and Methods: By application of Latin Hypercube techniques and spatial variables like soil, land use and geological maps the location of sample points was determined. For each land use unit (pasture or cropland) 70 composite surface soil samples (in total 140 samples) were collected from zero to 15 cm deep. After pretreatments of soil samples, soil's physical and chemical properties were measured according to standard protocols. A digital elevation model of the study area was formed using digital isolines of topographic maps and primary and secondary derivates were constructed. Landsat 8 bands were extracted from the Geology Department site of the USA and Normalized difference vegetation index and thermal map of the study area were calculated. Multiple linear regression and artificial neural network models were applied and soil data, digital elevation model and its derivates, normalized difference vegetation index and land surface temperature map have entered the models as independent variables for the prediction of soil organic carbon density. To evaluate the results of the models, the coefficients of determination and root mean square error was used.
Results: Application of multiple linear regression model indicated that total soil nitrogen, normalized difference vegetation index and mean weight diameter of aggregates justified 53% of soil organic carbon density in the pasture while 46% of soil organic carbon density in croplands land use was explained by total soil nitrogen and plane curvature. The results of the paired t-test showed a significant difference (P< 0.01) between soil organic carbon density of the pasture and cropland land use. An artificial neural network with an arrangement of 1-10-24 and tan-sigmoid transfer function in the hidden layer justified 71% and 82% of the soil organic carbon density in the pasture and croplands, respectively. Root mean square error of multiple linear regression models for predicting soil organic carbon density in the pasture and croplands were 1.07 and 1.04, respectively but of artificial neural network model was decreased to 0.85 and 0.58 for pasture and cropland, respectively. Sensitivity analysis revealed that the artificial neural network model was severely sensed to digital elevation model and soil moisture content at wilting point.
Conclusion: The result of this study indicated the significance of natural vegetation cover and the mean weight diameter of soil aggregates for carbon sequestration in the pastures. Artificial neural networks performed to simulate changes in soil organic carbon density showed that these networks are successful in tracking an important part of soil organic carbon density changes at pasture and cropland land uses. In other words, artificial neural networks were able to identify the effects of these variables on soil organic carbon density using tracing and identifying the effects and interactions between an independent variable series with organic carbon density status. The results showed that transmission functions can be used by the data of primary and secondary topographic parameters for estimating soil organic carbon density in the region.

کلیدواژه‌ها [English]

  • Multivariate linear regression model
  • Artificial neural network
  • Sensitivity analysis
1.Lal, R. 2004a. Soil carbon sequestration impacts on global climate change and food security. Science. 304: 1623-1627.
2.Geng, C., Haudin, C.S., Zhang, Y., Lashermes, G., Houot, S., and Garnier, P. 2015. Modeling the release of organic contaminants during compost decomposition in soil. Chemosphere, 119: 423-431.
3.Baldock, J.A. 2007. Composition and cycling of organic carbon in soil. Nutrient Cycling in Terrestrial Ecosystems. 10: 1-35.
4.Davidson, E.A., and Janssens, I.A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440: 165-173.
5.Liu, T., Zhang, H., and Shi, T. 2020. Modeling and predictive mapping of soil organic carbon density in a small-scale area using geographically weighted regression kriging approach. Sustainability, 12: 22. 1-12.
6.Wang, S.X., Liang, X.Q., Luo, Q.X., Fan, F., Chen, Y.X., Li, Z.Z., Sun, H.X., Dai, T.F., Wan, J.N., and Li, X.J. 2012. Fertilization increases paddy soil organic carbon density. Journal of Zhejiang University Science B, 13: 4. 274-282.
7.Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47: 151–163.
8.Eswaran, H., van Den Berg, E., and Reich, P. 1993. Organic carbon in soils of the world. Soil Science Society of America Journal, 57: 1. 192-194.
9.Post, W.M., Emanuel, W.R., Zinke, P.J., and Stangenberger, A.G. 1982. Soil carbon pools and world life zones. Nature, 298: 156-159.
10.Bagherifam, S., Delavar, M.A., Keshavarz, P., and Karimi, A.R. 2021. A review of soil carbon measurement methods: Experimental considerations, advantages and disadvantages. Journal of Soil Management and Sustainable Production, 10: 4. 1-30. (In Persian)
11.Smith, P. 2004. Soils as carbon sinks-the global context. Soil Use Management, 20: 212-218.
12.Guo, L.B., and Gifford, R.M. 2002. Soil carbon stocks and land use change. Global Change Biology, 8: 345-360.
13.Göl, C. 2017. Assessing the amount of soil organic matter and soil properties in high mountain forests in Central Anatolia and the effects of climate and altitude. Journal of Forest Science, 63: 199-205.
14.Mohamed, E.S., Abu-hashim Mohamed, AbdelRahman, M.A.E., Schütt, B., and Lasaponara, R. 2019. Evaluating the effects of human activity over the last decades on the soil organic carbon pool using satellite imagery and GIS techniques in the Nile delta area, Egypt. Sustainability, 11: 9. 2644.
15.Jakšic, S., Ninkov, J., Milic, S., Vasin, J., Živanov, M., Jakšic, D., and Komlen, V. 2021. Influence of slope gradient and aspect on soil organic carbon content in the region of Niš, Serbia. Sustainability, 13: 8332. 1-17.
16.Niu, X., Liu, C., Jia, X., and Zhu, J. 2021. Changing soil organic carbon with land use and management practices in a thousand-year cultivation region. Agriculture, Ecosystems and Environment, 322: 16-28.
17.Witzgall, K., Vidal, A., Schubert, D.I., Höschen, C., Schweizer, S.A., Buegger, F., Pouteau, V., Chenu, C., and Mueller, C.W. 2021. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 12: 4115. 1-10.
18.Bongiovanni, M.D., and Lobartini, J.C. 2006. Particulate organic matter, carbohydrate, humic acid contents in soil macro-and microaggregates as affected by cultivation. Geoderma, 136: 3-4. 660-665.
19.Pilevar Shahri, A.R., Ayoubi, Sh., and Khademi, H. 2011. Comparison of artificial neural network (ANN) and multivariate linear regression (MLR) models to predict soil organic carbon using digital terrain analysis (Case study: Zargham Abad Semirom, Isfahan proviance). Journal of Water and Soil, 24: 6. 1151-1163. (In Persian)
20.Moghimi, S., Parvizi, Y., Mahdian, M.H., and Masih Abadi, M.H. 2014. Application of multiple linear regression and artificial neural networks to simulate the effects of topographic factors on organic carbon variations. Watershed Engineering and Management, 6: 4. 312-322. (In Persian)
21.Besalatpour, A.A., Ayoubi, Sh., and Hajabbasi, M.A. 2015. Determination of the linear and non-linear relationships between soil erodibility factor and effective parameters on it in a mountainous watershed with severe soil erosion. Environmental Erosion Research, 4: 16. 49-63. (In Persian)
22.Menhaj, M.B. 2002. Basics of neural networks. Amir Kabir University of Technology Publications. 715p. (In Persian)
23.Falahatkar, S., Hosseini, S.M., Ayoubi, Sh., and Salman Mahiny, A. 2013. The impact of primary terrain attributes and land cover/use on soil organic carbon density in a region of northern Iran. Journal of Water and Soil, 27: 5. 963-972. (In Persian)
24.Guo, P.T., Wu, W., Sheng, Q.K., Li, M.F., Liu, H.B., and Wang, Z.Y. 2013. Prediction of soil organic matter using artificial neural network and topographic indicators in hilly areas. Nutrient Cycling in Agroecosystems, 95: 3. 333-344.
25.Javan, F., Hasani Moghaddam, H., and Torabi, H. 2020. evaluation of deforestation process using artificial neural networks algorithm (Case study: Namin county hazelnut forests). Environment and Interdisciplinary Development, 5: 69. 63-74. (In Persian)
26.Civil and organizing the forest area of Fondoqloo. 2011. Natural Resources Organization of Ardabil Province. 230p. (In Persian)
27.Shields, M.D., and Zhang, J. 2016. The generalization of Latin hypercube sampling. Reliability Engineering and System Safety, 148: 96-108.
28.Kemper, W.D., and Rosenau, R.C. 1986. Methods of soil analysis. Part 1. Physical and mineralogical methods. Agronomy Monograph No. 9 (2nd Edition).
29.Benton Jones, Jr. J. 2001. Laboratory guide for conducting soil tests and plant analysis. CRC Press. 363p.
30.Campbell, D.J., and Henshall, J.K. 2001. Bulk density. P 315-348. In K.A. Smith and C.M. Mullins, (Eds). Soil and environmental analysis: Physical methods, 2nd ed. Dekker, New York.
31.Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54: 464-465.
32.Blake, G.R., and Hartge, K.H. 1986. Bulk density. P 363-382. In: A. Klute, (Ed.) Methods of Soil Analysis, Part 1-Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph 9, American Society of Agronomy- Soil Science Society of America, Madison.
33.Hazelton, P., and Murphy, B. 2007. Interpreting soil test results. CSIRO publishing. 169p.
34.Carter, M.R., and Gregorich, E.G. 2008. Soil sampling and methods of analysis. Canadian Society of Soil Science. CRC Press, 1224p.
35.De Vos, B., Lettens, S., Muys, B., and Deckers, J.A. 2007. Walkley–Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use and Management, 23: 221-229.
36.Matejovic, I. 1995. Total nitrogen in plant-material determined by means of dry combustion-a possible alternative to determination by Kjeldahl digestion. Communications Soil Science Plant Analysis. 26: 2217-2229.
37.Fenton, G., Helyar, K.R., and Orchard, P. 1993. Soil acidity and liming. NSW Agriculture Agfact AC 19.
38.Fang, X., Xue, Z., Li, B., and An, S. 2012. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena, 88: 6-13.
43.Muchena, R. 2017. Estimating soil carbon stocks in a dry miombo ecosystem using remote sensing. Chesa Forest Research Station, 6: 2-6.
44.Pandey, C.B., Chaudhari, S.K., Dagar, J.C., Singh, G.B., and Singh, R.K. 2010. Soil N mineralization and microbial biomass carbon affected by different tillage levels in a hot humid tropic. Soil and Tillage Reserch, 110: 33-41.
45.Barsi, J.A., Schott, J.R., Hook, S.J., Raqueno, N.G., Markham, B.L., and Radocinski, R.G. 2014. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6:11. 11607-11626.
46.Yu, X., Guo, X., and Wu., Z., 2014. Land surface temperature retrieval from Landsat 8 TIRS-comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6: 9829-9852.
48.Zevebergen, L.W., and Thorne, C.R. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12: 47-56.
49.Moore, I.D., Gessler, P.E., Nielsen, G.A., and Peterson, G.A. 1993. Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57: 443-452.
50.Waga, K., Malinen, J., and Tokola, T. 2020. A topographic wetness index for forest road quality assessment: An application in the lakeland region of Finland. Forests, 11: 11. 1-13.
51.Ortiz–Rodríguez, J.M., Martínez–Blanco, M.R., Viramontes, J.M.C., and Vega–Carrillo, H.R. 2013. Robust design of artificial neural networks methodology in neutron spectrometry. P 83-111. In: K. Suzuki (ed) Artificial neural networks–architectures and applications. InTech.
52.Rezaei, A., Mahdavi, M., Lux, K., Feiz Nia, S., and Mahdian, M.H. 2007. Regional modeling of peak discharges under the watersheds of Sefidrood Dam using artificial neural network, Journal of Water and Soil Science, 11: 1. 3-25. (In Persian)
53.Shirani, H. 2017. Artificial neural network with an application in agricultureal and natural resource sciences. Publication of Valii-e-Asr, University of Fafsanjan. 320p. (In Persian)
54.Liu, J., Goering, C.E., and Tian, L. 2001. A neural network for setting target yields, American Society of Agricultural and Biological Engineers, 44: 705-713.
55.Hosseini, M., Movahedi Naeini, S.A., Dehghani, A.A., and Khaledian, Y. 2016. Estimation of soil mechanical resistance parameter by using particle swarm optimization, genetic algorithm and multiple regression methods. Soil and Tillage Research, 157: 32-42.
56.Geissen, V., Sánchez-Hernández, R., Kampichler, C., Ramos-Reyes, R., Sepulveda-Lozada, A., Ochoa-Goana, S., de Jong, B.H., Huerta-Lwanga, E., and Hernández-Daumas, S. 2009. Effects of land use change on some properties of tropical soils-an example from southeast Mexico. Geoderma, 151: 87-97.
57.Templeton, G.F. 2011. A two-step approach for transforming continuous variables to normal: implications and recommendations for IS research. Communications of the Association for Information Systems, 28: 4. 41-58.
58.Ingleby, H.R., and Crowe, T.G. 2001. Neural network models for predicting organic matter content in Saskatchewan soils. Canadian Biosystems Engineering, 43: 71-75.
59.Mohamadi, J. 2001. A review of geostatic foundations and its application in soil science. Journal of Water and Soil, 1: 99-121. (In Persian)
60.Munda, S., Bhaduri, D., Mohanty, S., Chatterjee, D., Tripathi, R., Shahid, M., Kumar, U., Bhattacharyyaa, P., Kumar, A., Adak, T., Jangde, H.K., and Nayak, A.K. 2018. Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar. Biomass and Bioenergy, 115: 1-9.
61.Wilding, L. 1985. Spatial variability, its documentation, accommodation and implication to soil surveys. P 166-194. In: D. R, Nielsen and J. Bouma (Eds.), Soil Spatial Variability. Pudoc, Wageningen, the Netherlands.
62.Mahmoudzadeh, H., Matinfar, H.R., and Taghizadeh-Mehrjerdi, R. 2021. Digitization of soil organic carbon with artificial neural network and multivariate linear regression in Kurdistan province. Journal of Soil Management and Sustainable Production, 10: 4. 77-98. (In Persian)
63.Ceddia, M.B., Vieira, S.R., Villela, A.L.O., Mota, L., Dos, S., Anjos, L.H.C. Dos, and Carvalho, D.F. de. 2009. Topography and spatial variability of soil physical properties. Scientia Agricola, 66: 3. 338-352.
64.Norouzi, M., Ayoubi, Sh., Jalalian, A., Khademi, H., and Dehghani, A.A. 2009.  Predicting rainfed wheat quality and quantity by artificial neural network using terrain and soil characteristics. Acta Agriculturae Scandinavica
Section B - Soil and Plant Science,
60: 4. 341-352.
65.Terra, J.A., Shaw, J.N., Reeves, D.W., Raper, R.L., van Santen, E., and Mask, P.L. 2004. Soil carbon relationships with terrain attributes, electrical conductivity, and a soil survey in a coastal plain landscape, Soil Science, 169: 819-831.
66.Zhong, B., and Xu, Y.J. 2009. Topographic effects on soil organic carbon in Louisiana watersheds. Environmental Management, 43: 664-672.
67.Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W. 1973. Monitoring Vegetation systems in the Great Plains with ERTS. 3rd ERTS Symposium, NASA SP-351, Washington DC, 10-14 December, pp. 309-317.
68.Florinsky, I.V. 2012. Digital terrain analysis in soil science and geology, Elsevier/Academic.
69.Mitasova, H., Hofierk, J., Zlocha, M., and Iverson, L. 1996. Modelling topographic potential for erosion and deposition using GIS. Geographical Information System, 10: 5. 629-641.
70.Stakland, S.K. 2010. Effect of mica content on surface infiltration of soils in northwestern Kern County, California. A thesis submitted in partial fulfillment of the requirements for the degree Utah State University.
71.Ke, Y., Im, J., Lee, J., Gong, H., and Ryu, Y. 2015. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and insitu observations. Remote Sensing of Environment, 164: 298-313.
72.Dontree, S. 2010. Relation of land surface temperature (LST) and land use/land cover (LULC) from remotely sensed data in Chiang Mai-Lamphun basin. In SEAGA conference.
73.Jamali, Z., Ownegh, M., and Salman Mahini, A. 2019. Earth's surface temperature analysis with land use and Normalized Difference Vegetation Index in Gorgan plain. Spatial Planning,
23: 3. 175-194. (In Persian)
74.Jobbágy, E.G., and Jackson, R.B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications,
10: 423-436.
75.Lorenz, K. 2013. Ecosystem carbon sequestration. P 39-62. In: R. Lal, K. Lorenz, R.F. Hüttl, B.U. Schneider, and J. von Braun, (Eds.), Ecosystem services and carbon sequestration in the biosphere. Springer Science+Business Media Dordrecht.
76.Mueller, T.G., and Pierce, F.J. 2003. Soil carbon maps: Enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Science Society American Journal, 67: 258-267.
77.Fissore, C., Dalzell, B.J., Berhe, A.A., Voegtle, M., Evans, M., and Wu, A. 2017. Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena, 149: 140-149.
78.Jamshidi, M., Delavar, M.A., Taghizadehe-Mehrjerdi, R. and Brungard, C. 2019. Evaluating digital soil mapping approaches for 3D mapping of soil organic carbon. Iranian Journal of Soil Research, 33: 2. 227-240. (In Persian)
79.Zhang, Y., Guo, L., Chen, Y., Shi, T., Luo, M., Ju, Q., and Wang, S. 2019. Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei province, China. Remote Sensing, 11: 14. 1-26.
80.Bhunia, G.S., Shit, P.K., and Pourghasemi, H.R. 2017. Soil organic carbon mapping using remote sensing techniques and multivariate regression model. Geocarto International, 56: 1-12.
81.Buschiazzo, D.E., Quiroga, A.R., and Stahr, K. 1991. Patterns of organic matter accumulation in soil sof the Semiarid Argentinean Pampas. Zeitschrift für Pflanzenernährung und Bodenkunde, 154: 437-441.  
82.Zheng, J.J., He, X.B., Walling, D., Zhang, X.B., Flanagan, D., and Qi, Y.Q. 2007. Assessing soil erosion rates on manually-tilled hillslopes in the Sichuan hilly basin using 137Cs and 210 Pbex measurements. Pedosphere, 17: 3. 273-283.
83.Guo, P.T., Wu, W., Liu, H.B., and Li, M.F. 2011. Effects of land use and topographical attributes on soil properties in an agricultural landscape. Soil Resource, 49: 7. 606-613.
84.Schaap, M.G., Leij, F.J., and Van Genuchten M.T.H. 2001. Rosetta, a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251: 163-176.
85.Singh, Y., Singh, B., and Timsina, J. 2005.Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Advances in Agronomy, 85: 269-407.
86.Das, S.K., Reddy, S.G., Sharma, K.L., Vittal, K.P.R., Venkateswarlu, B., Reddy, M.N., and Reddy, Y.V.R. 1993. Prediction of nitrogen availability in soil after crop residue incorporation. Fertilizer research, 34: 209-215.
87.Najafi, Z., Golchin, A., and Shafiei, S. 2016. The effects of soil moisture levels on dynamics of organic carbon and nitrogen from alfalfa and barley residues. Journal of Water and Soil Conservation, 23: 4. 171-186. (In Persian)
88.Podwojewski, P., Poulenard, J., Nguyet, M.L., de Rouw, A., Nguyen, V.T., Pham, Q.H., and Tran, D.T. 2011. Climate and vegetation determine soil organic matter status in an alpine inner-tropical soil catena in the Fan Si Pan Mountain, Vietnam. Catena, 87:2. 226-239.
89.Bian, Z., Guo, X., Wang, S., Zhuang, Q., Jin, X., Wang, Q., and Jia, S. 2020. Applying statistical methods to map soil organic carbon of agricultural lands in northeastern coastal areas of China. Archives of Agronomy and Soil Science, 66:4. 532-544. 1-13.