بررسی تأثیر دمای گرماکافت و اصلاح شیمیایی بر ویژگی های زغال های زیستی باگاس نیشکر و کاه برنج

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

4 دانشیار گروه مهندسی آب و خاک، دانشکده کشاورزی، دانشگاه ایالم، ایالم، ایران

10.22069/ejsms.2024.21851.2122

چکیده

سابقه و هدف: در سال‌های اخیر با توجه به حجم زیاد پسماندهای کشاورزی، تولید و کاربرد زغال زیستی به‌عنوان یک ماده‌ غنی از کربن در جهت بازیافت بقایای گیاهی، کاهش انتشار گازهای گلخانه‌ای، حفظ عناصر غذایی و حذف آلاینده‌ها و فلزات سنگین از خاک اهمیت زیادی پیدا کرده است. این پژوهش با هدف بررسی تأثیر دمای گرماکافت، نوع زیست‌توده و اصلاح با نمک‌های معدنی بر ویژگی‌های زغال‌های زیستی تولید شده انجام شد.
مواد و روش‌ها: برای انجام پژوهش آزمایش فاکتوریل در قالب طرح کاملاً تصادفی و با سه تکرار اجرا شد. فاکتورهای آزمایش شامل نوع زیست‌توده اولیه در 2 نوع (باگاس نیشکر و کاه برنج)، دمای گرماکافت در 2 سطح (300 و 500 درجه سلسیوس) و نوع اصلاح زغال زیستی در 4 مدل (شاهد یا بدون اصلاح، اصلاح‌ با کلریدآهن، کلریدروی و فسفات دی‌هیدروژن پتاسیم) بودند. ابتدا آماده‌سازی زغال‌های زیستی (16 نمونه در 3 تکرار) انجام و سپس ویژگی‌های فیزیکوشیمیایی آن‌ها اندازه‌گیری و تجزیه و تحلیل شد.
یافته‌ها: نتایج نشان داد که با افزایش دمای گرماکافت در تمام زغال‌های زیستی شاهد و اصلاح شده، میزان خاکستر، کربن تثبیت شده (FC)، هدایت الکتریکی(EC)، اسیدیته (pH)، سطح ویژه (SSA)، محتوای کربن و نسبت C/N افزایش یافت و عملکرد، مواد فرار، ظرفیت تبادل کاتیونی(CEC)، محتوای اکسیژن و هیدروژن کاهش پیدا کرد. در زغال‌های زیستی کاه برنج (شاهد و اصلاح‌شده) محتوای اکسیژن، نسبت O/C و O+N/C در هر دو دما و مقدار CEC در دمای 500 درجه سلسیوس نسبت به زغال‌های زیستی باگاس نیشکر بیش‌تر و مقدار سطح ویژه آن کم‌تر بود. اصلاح با نمک‌های معدنی باعث افزایش میزان خاکستر، عملکرد، CEC، سطح ویژه، EC، محتوای اکسیژن، نسبت O/C و کاهش pH، میزان کربن، نیتروژن و هیدروژن در زغال‌های زیستی تولید شده در هر دو سطح دما و دو نوع زیست-توده شد. بیش‌ترین مقدار CEC در زغال زیستی باگاس نیشکر تولید شده در دمای 300 درجه سلسیوس اصلاح شده با فسفر (58/94 سانتی‌مول ‌بر کیلوگرم) و بیش‌ترین سطح ویژه در زغال زیستی باگاس نیشکر 500 درجه سلسیوس اصلاح‌شده با آهن (49/94 مترمربع-برگرم) مشاهده گردید. زغال زیستی کاه برنج 500 درجه سلسیوس بدون اصلاح با pH 83/8 بالاترین مقدار pH را داشت و زغال زیستی کاه برنج 500 درجه سلسیوس اصلاح‌‌شده با آهن با EC 23/9 بالاترین میزان EC و نیز بیش‌ترین درصد خاکستر (07/49 درصد) را نسبت به دیگر زغال‌های زیستی نشان دادند. بیش‌ترین کربن تثبیت شده نیز به‌ترتیب مربوط به زغال زیستی باگاس نیشکر 500 درجه سلسیوس بدون اصلاح (4/51 درصد) و زغال زیستی باگاس نیشکر 500 درجه اصلاح‌شده با روی (7/48 درصد) بود. زغال زیستی کاه برنج 300 درجه سلسیوس اصلاح‌شده با آهن، کم‌ترین درصد کربن تثبیت‌شده و بالاترین نسبت H/C، O/C و O+N/C را داشت و در زغال‌های زیستی اصلاح شده با روی تولیدشده در دمای 500 درجه سلسیوس، این نسبت‌ها کم‌ترین مقدار را در مقایسه با زغال‌های زیستی دیگر داشتند که احتمالاً نشان‌دهنده پایداری بیش‌تر آن‌هاست.
نتیجه‌گیری: نتایج این پژوهش نشان داد که زغال‌های زیستی تولید شده در دمای 300 درجه سلسیوس به‌ویژه انواع اصلاح شده با فسفر و آهن دارای ویژگی‌هایی هستند که پیش‌بینی می‌شود برای حذف آلاینده‌ها از آب و خاک و بهبود حاصلخیزی خاک مناسب باشند و زغال-های زیستی تهیه شده در دمای 500 درجه سلسیوس به‌ویژه انواع اصلاح‌شده با روی ویژگی‌های مورد نیاز برای کاربرد در جهت ترسیب کربن در خاک را دارند. البته برای ارائه نتایج دقیق‌تر، لازم است کارهای پژوهشی بیش‌تری انجام شود. به‌طور کلی استفاده از نمک‌های معدنی برای اصلاح زغال زیستی می‌تواند در بهینه‌سازی ویژگی‌های آن، با توجه به هدف کاربرد، مؤثر باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of pyrolysis temperature and chemical modification on characteristics of sugarcane bagasse and rice straw biochars

نویسندگان [English]

  • Safoora Jafari 1
  • Abdolamir Moezzi 2
  • Mojtaba Norouzi Masir 3
  • Mahmood Rostaminia 4
1 Ph.D. Student, Dept. of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Professor, Dept. of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Associate Prof., Dept. of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz,
4 Associate Prof., Dept. of Water and Soil Engineering, Faculty of Agriculture, Ilam University, Ilam, Iran
چکیده [English]

Abstract
Background and Objective: In recent years, due to the large amount of agricultural wastes, the production and use of biochar as a carbon-rich material has become very important in order to recycle plant residues, reduce greenhouse gas emissions, preserve nutrients and remove pollutants and heavy metals from the soil. This research was conducted with the aim of investigating the effect of pyrolysis temperature, type of biomass and modification with mineral salts on the characteristics of produced biochars.
Materials and methods: To carry out the research, a factorial experiment was conducted in the form of a completely randomized design with three replications. The experimental factors include the type of feedstock in 2 types (sugarcane bagasse and rice straw), the pyrolysis temperature in 2 levels (300 and 500 ºC) and the type of biochar΄s modification in 4 models (control or without modification, modification with FeCl3, ZnCl2 and KH2PO4). At first, biochars were prepared (16 samples in 3 replicates) and then their physicochemical properties were measured and analyzed.
Results: The results showed that with the increase of pyrolysis temperature in control and all modified biochars, the amount of ash, fixed carbon, electrical conductivity (EC), acidity (pH), specific surface area (SSA), carbon content and C/N ratio increased and yield, volatile matter, cation exchange capacity (CEC), oxygen and hydrogen content decreased. In rice straw biochars (control and modified), oxygen content, O/C and O+N/C ratio at both temperatures and CEC value at 500 ºC are higher than sugarcane bagasse biochars and Its SSA was less. Modification with mineral salts increased the amount of ash, yield, CEC, SSA, EC, oxygen content, O/C ratio and decreases pH, carbon, nitrogen and hydrogen content in biochars produced at both temperature levels and two types of biomass. The highest amount of CEC was observed in sugarcane bagasse biochar produced at 300 ºC modified with phosphorus (58.94 cmol.kg-1) and the highest SSA in sugarcane bagasse biochar produced at 500 ºC modified with iron (94.49 m2/kg). The rice straw biochar produced at 500 ºC without modification with a pH of 8.83 had the highest pH value, and the rice straw biochar produced at 500 ºC modified with iron with EC of 9.23 had the highest EC value and the highest percentage of ash (49.07%) compared to other biochars. The most fixed carbon was related to unmodified 500 ºC sugarcane bagasse biochar (51.4%) and 500 ºC sugarcane bagasse biochar modified with zinc (48.7%). Th 300 ºC rice straw biochar modified with iron had the lowest percentage of fixed carbon and the highest ratio of H/C, O/C and O+N/C and in biochar modified with zinc produced at 500 ºC, these ratios had the lowest value compared to other biochars, which probably indicates their greater stability.
Conclusion: The results of this research showed that the biochars produced at 300 ºC, especially the types that modified with phosphorus and iron, have properties that are expected to remove pollutants from water and soil and improve soil fertility, and the biochars prepared at 500 ºC, especially the types that modified with zinc, have the characteristics required for application in order to carbon sequestration in the soil. Of course, more research needs to be done to provide more accurate results. In general, the use of mineral salts to modify biochar can be effective in optimizing its characteristics, according to the purpose of application.

کلیدواژه‌ها [English]

  • Biochar characteristics
  • pyrolysis temperature
  • feedstock
  • modification
1.Najafi, G., Ghobadian, B., Tavakoli, T., & Yusaf, T. (2009). Potential of bioethanol production from agricultural wastes in Iran. Renewable and Sustainable Energy Reviews, 13 (6-7), 1418-1427. doi:10.1016/j.rser.2008.08. 010.
2.Rendleman, J. A. (1967). Complexes of alkali metals and alkaline-earth metals with carbohydrates. advances in carbohydrate chemistry and biochemistry, 21, 209-271. doi: 10.1016/S0096-5332 (08)60318-5.
3.Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60 (3), 393-404. doi: 10. 1080/03650340. 2013.789870.
4.Chen, D., Wang, X. B., Wang, X. L., Feng, K., Su, J. C., & Dong, J. N. (2020). The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil. Science of the Total Environment, 714 (136550), 1-8. doi:10.1016/j. scitotenv.2020.136550.
5.Yadav, A., Ansari, K. B., Simha, P., Gaikar, V. G., & Pandit, A. B. (2016). Vacuum pyrolysed biochar for soil amendment. Resource Efficient Technologies, 2, 177-185. doi: 10.1016/ j.reffit.2016.11.004.
6.Tan, Z., Lin, C. S. K., Ji, X., & Rainey, T. J. (2017). Returning biochar to fields: A review. Applied Soil Ecology, 116, 1-11. doi:10.1016/j.apsoil.2017. 03.017.
7.Jiang, Z., Lian, F., Wang, Z., & Xing, B. (2020). The role of biochars in sustainable crop production and soil resiliency. Journal of Experimental Botany, 71, 520-542. doi:10.1093/jxb/ erz301.
8.Liu, S., Konga, F., Lia, Y., Jianga, Z., Xia, M., & Wub, J. (2020). Mineral-ions modified biochars enhance the stability of soil aggregate and soil carbon sequestration in a coastal wetland soil. Catena, 193 (104618), 1-12. doi:10.1016/ j.catena.2020.104618.
9.Nan, H., Yin, J., Yang, F., Luo, Y.,
Zhao, L., & Cao, X. (2021). Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration. Environmental Pollution, 287 (117566), 10.1016/j.envpol.2021. 117566.
10.Zhao, L., Cao, X. D., Zheng, W., Scott, J. W., Sharma, B. K., & Chen, X. (2016). Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chemistry & Engineering, 4, 1630-636. doi:10.1021/acssuscheme ng.5b01570.
11.Foong, S. Y., Chan, Y. H., Fui Chin, B. L., Mun Lock, S. S., Yee, C. Y., Yiin, C. L., Peng, W., & Lam, S. S. (2022). Production of biochar from rice straw and its application for wastewater remediation. Bioresource Technology, 360 (127588), 1-16. doi:10.1016/j.bior tech.2022 .127588.
12.El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., immerman, A. R., Ahmad, M., Shaheen, S. M., & Ok, Y. S. (2019). Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma, 337, 536-554. doi:10.1016/j.geoderma.2018.09.034.
13.Qin, C., Wang, H., Yuan, X., Xiong, T., Zhang, J., & Zhang, J. (2020). Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices. Chemical Engineering Journal, 382 (122977), 1-3. doi:10.1016/j.cej.2019.122977.
14.Xiao, R., Wang, J. J., Gaston, L. A., Zhou, B., Park, J. H., Li, R., Dodla, S. K., & Zhang, Z. (2018). Biochar produced from mineral salt-impregnated chicken manure: Fertility properties and potential for carbon sequestration. Waste Management, 78, 802-810. doi:10.1016/ j.wasman.2018. 06.047.
15.Chen, T., Zhang, Y., Wang, H., Lu, W., Zhou, Z., Zhang, Y., & Ren, L. (2014). Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresourse Technology, 164, 47-54. doi:10.1016/j.biortech.2014.04.048.
16.Liu, Z., Jia, M., Li, Q., Lu, S., Zhou, D., Feng, L., Hou, Z., & Yu, J. (2023). Comparative analysis of the properties of biochars produced from different pecan feedstocks and pyrolysis temperatures. Industrial Crops & Products, 197 (116638), doi: 10.1016/j. indcrop.2023.116638.
17.Rangabhashiyam, S., & Balasubramanian, P. (2019). The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application-A review. Industrial Crops & Products, 128, 405-423. doi:10.1016/ j.indcrop.2018.11.041.
18.Shaaban, A., Se, S. M., Dimin, M. F., Juoi, J. M., Mohd Husin, M. H., & Mitan, M. M. (2014). Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 107, 31-39. doi:10.1016/j.jaap.2014. 01.021.
19.Almutairi, A. A., Ahmad, M., Rafique, M. I., & Al-Wabel, M. I. (2023). Variations in composition and stability of biochars derived from different feedstock types at varying pyrolysis temperature. Journal of the Saudi Society of Agricultural Sciences, 22, 25-34. doi:10.10.1016 /j.jssas.2022. 05.005.
20.Balmuk, G., Videgain, M., Manya, J. J., Duman, G., & Yanik, J. (2023). Effects of pyrolysis temperature and pressure on agronomic properties of biochar. Journal of Analytical and Applied Pyrolysis, 169 (105858), 1-8. doi: 10.1016/j.jaap.2023.105858.
21.Luo, Y., Zhao, L., Li, Z., Xu, X., Xu, H., Qiu, H., & Cao, X. (2022). Development of phosphorus composite biochar for simultaneous enhanced carbon sink and heavy metal immobilization in soil. Science of the Total Environment,
831 (154845), 1-38. doi:10.1016/ j.scitotenv.2022.154845.
22.Lia, X., Wanga, C., Tiana, J., Liua, J., & Chena, G. (2020). Comparison of adsorption properties for cadmium removal from aqueous solution by Enteromorpha prolifera biochar modified with different chemical Reagents. Environmental research, 186 (109502), 1-8. doi:10.1016/j. envres.2020.109502.
23.Singh Yadav, P. S., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., Ghimire, N., Paudel, P., Paudel, P., Shrestha, J., & Oli, B. (2023). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 11 (100498), 1-13. doi: 10.1016/j. jafr.2023.100498.
24.Khajavi-Shojaei, S., Moezzi, A., Norouzi Masir, M., & Taghavi, M. (2020). Investigating the effect of various surface and chemical modification approaches on corn residue and common reed derived-biochar traits. Applied Soil Research, 9 (2), 73-86. [In Persian]
25.Liu, Z., Tang, J., Ren, X., & Schaeffer, S. M. (2021). Effects of phosphorus modified nZVI-biochar composite on emission of greenhouse gases and changes of microbial community in soil. Environmental Pollution, 274 (116483), 1-11. doi:10.1016/ j.envpol.2 021.116483.
26.Ning, K., Gong, K., Chen, H., Cui, Q., Xin, C., Tong, X., Qiu, J., & Zheng, S. (2022). Lead stabilization in soil using P-modified biochars derived from kitchen waste. Environmental Technology & Innovation, 28 (102953), 1-10.
doi: 10.1016/j.eti.2022. 102953.
27.Lee, H. S., & Shin, H. S. (2021). Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods. Journal of Environmental Management, 299 (113651), 1-10. doi: 10.1016/j.jenvman.2021.113651.
28.Yang, Y., Sun, K., Han, L., Jin, J., Sun, H., Yang, Y., & Xing, B. (2018). Effect of minerals on the stability of biochar. Chemosphere, 204, 310-317. doi: 10. 1016/j.chemosphere.2018. 04.057.
29.Yang, S., Wen, Q., & Chen, Z. (2021). Effect of KH2PO4-modified biochar on immobilization of Cr, Cu, Pb, Zn and as during anaerobic digestion of swine manure. Bioresource Technology, 339 (125570), 1-9. doi: 10.1016/j. biortech.2021.125570.
30.Li, W., Cheng, C., He, L., Liu, M., Cao, G., Yang, S., & Ren, N. (2021). Effects of feedstock and pyrolysis temperature of biochar on promoting hydrogen production of ethanol-type fermentation. Science of the Total Environment, 790 (148206), 1-10. doi: 10.1016/j. scitotenv.2021.148206.
31.Singh, B., Camps-Arbestain, M., & Lehmann, J. (Eds.). (2017). Biochar: a guide to analytical methods. Csiro Publishing.
32.Domingues, R. R., Trugilho, P. F., Silva, C. A., Melo, I. C. N., Melo, L. C., Magriotis, Z. M., & Sanchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PlOS ONE, 12 (5), 0176884, 1-19. doi: 10.1371 /journal.pone.0176884.
33.Liu, Q., Jiang, S., Su, X., Zhang, X., Cao, W., & Xu, Y. (2021). Role of the biochar modified with ZnCl2 and
FeCl3 on the electrochemical degradation of nitrobenzene. Chemosphere, 275 (129966), 1-9. doi: 10.1016/j. chemosp here.2021.129966.
34.Yang, X., Ng, W., Wong, B. S. E., Baeg, G. H., Wang, C. H., & Ok, Y. S. (2019). Characterization and ecotoxicological investigation of biochar produced via slow pyrolysis: effect of feedstock composition and pyrolysis conditions. Journal of Hazardous Materials, 365, 178-185. doi: 10.1016/j.jhazmat. 2018.10.047.
35.Zhang, H., Shao, J., Zhang, S., Zhang, X., & Chen, H. (2020). Effect of Phosphorus-Modified Biochars on Immobilization of Cu (II), Cd (II), and As (V) in Paddy Soil, Journal of Hazardous Materials, 390 (121349), 1-24. doi.org/10.1016/j.jhazmat.2019.121349.
36.Rafique, M. I., Usman, A. R. A., Ahmad, M., Sallam, A., & Al-Wabel, M. I. (2020). In situ immobilization of Cr and its availability to maize plants in tannery waste–contaminated soil: effects of biochar feedstock and pyrolysis temperature. Journal of Soils Sediments, 20 (1), 330-339. doi: 10.10 07/s11368-019-02399-z.
37.Sun, J., Benavente, V., Jansson, S., & Masek, O. (2023). Comparative characterisation and phytotoxicity assessment of biochar and hydrochar derived from municipal wastewater microalgae biomass. Bioresource Technology, 386 (129567, 1-11. doi: 10.1016/j.biortech.2023.129567.
38.Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., & Chen, Y. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy, 47, 268-276. doi: 10. 1016/j.biombioe.2012.09.034.
39.Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2018). Investigation of physicochemical characteristics of biochars derived from corn residue and sugarcane bagasse in different pyrolysis temperatures. Iranian Journal of Soil and Water Research, 50(3), 725-739. doi: 10.22059/ijswr.2018.259525.66 7933. [In Persian]
40.Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: science, Technology and implementation, UK, 438 p.
41.Ippolito, J. A., Cui, L., Kammann, C., Wrage-Monnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., and Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2 (4), 421-438. doi: 10.1007/s42773-020-00067-x.
42.Zhao, L., Cao, X., Zheng, W., & Kan, Y. (2014). Phosphorus-assisted biomass thermal conversion: reducing carbon loss and improving biochar stability. Plos one, 9 (12), e115373, doi: 10.13 71/journal.pone.0115373.
43.Wen, E., Yang, X., Chen, H., M. Shaheen, S., Sarkar, B., Xu, S., Song, H., Liang, Y., Rinklebe, J., Hou, D., Li, Y., Wu, F., Pohorely, M., W. C. Wong, J., & Wang, H. (2021). Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. Journal of Hazardous Materials, 407 (124344), 1-30. doi: 10. 1016/j. jhazmat.2020.12434 4.
44.Tao, Q., Li, B., Li, Q., Han, X., Jiang, Y., Jupa, R., Wang, C., & Li, T. (2019). Simultaneous remediation of sediments contaminated with sulfamethoxazole and cadmium using magnesium-modified biochar derived from Thalia dealbata. Science of the Total Environment, 659, 1448-1456. doi: 10.1016/j. scitotenv.2018.12.361.
45.Xu, Y., Bai, T., Li, Q., Yang, H., Yan, Y., Sarkar, B., Lam, S. S., & Bolan, L. (2021). Influence of pyrolysis temperature on the characteristics and lead(II) adsorption capacity of phosphorus-engineered poplar sawdust biochar. Journal of Analytical and Applied Pyrolysis, 154 (105010), 1-11. doi: 10.1016/j.jaap.2020.105010.
46.Ahmad, M., Usman, A. R. A., Al-Faraj, A.S., Ahmad, M., Sallam, A., & Al-Wabel, M.I. (2017). Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere, 194, 327-339. doi: 10. 10.1016/j.chemosphere.2017.1.156.
47.Yusuff, A. S., Lala, M. A., Thompson. Yusuff, K., & Babatunde, E. O. (2022). ZnCl2-modified eucalyptus bark
biochar as adsorbent: preparation, characterization and its application in adsorption of Cr(VI) from aqueous solutions. South African Journal of Chemical Engineering, 42, 138-145. doi: 10.1016/j.sajce.2022.08.002.
48.Devi, P., & Saroha, A. K. (2015). Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni-ZVI magnetic biochar composites synthesized from paper mill sludge. Chemical Engineering Journal, 271, 195-203. doi: 10.1016/j.cej.2015.02.087.
49.Xu, X., Zhao, Y., Sima, J., Zhao, L., Masek, O., & Cao, X. (2017). Indispensable role of biochar- inherent mineral constituents in its environmental applications: A review. Bioresource Technology, 241, 887-899. doi: 10.1016/j.biortech.2017.06.023.
50.Rawal, A., Joseph, S. D., Hook, J. M., Chia, C. H., Munroe, P. R., Donne, S., Lin, Y., Phelan, D., Mitchell, D. R. G., Pace, B., Horvat, J., and Webber, J. B. W. (2016). Mineral-Biochar Composites: Molecular Structure and Porosity. Environmental Science & Technology, 50, 7706-7714. doi: 10.1021/acs.est. 6b00685.
51.Jeong, C. Y., Syam, K., Dodla, L., & Wang, J. J. (2015). Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Chemosphere, 142, 4-13. doi: 10.1016/ j.chemosphere.2015.05.084.
52.Kavitha, B., Reddy, P. V. L., Kim, B., Lee, S. S., Pandey, S. K., & Kim, K. H. (2018). Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227, 146-154. doi: 10. 1016/j.jenvman.2018.08. 082.
53.Dey, S., Purakayastha, T. J., Sarkar, B., Rinklebe, J., Kumar, S., Chakraborty, R., Datta, A., Lal, K., & Shivay, Y. S. (2023). Enhancing cation and anion exchange capacity of rice straw biochar by chemical modification for increased plant nutrient retention. Science of the Total Environment, 886 (163681), 1-54. doi: 10.1016/j.scitotenv.2023.163681.
54.Reguyal, F., Sarmah, A. K., & Gao, W. (2017). Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. Journal of Hazardous Materials, 321, 868-878. doi: 10.1016/ j.jhazmat.2016.10. 006.
55.Dai, Y., Zheng, H., Jiang, Z., & Xing, B. (2020). Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Science of the Total Environment, 713 (136635), 1-11. doi: 10.1016/j.scitotenv.2020.136635.
56.Li, Y., Yin, H., Guo, Z., Zhu, M., Yan, C., Li, X., & Dang, Z. (2023). Effects of α-Fe2O3 modified chicken manure biochar on the availability of multiple heavy metals and soil biochemical properties. Journal of Environmental Chemical Engineering, 11: (109922), 1-9. doi: 10.1016/j.jece.2023.109922.
57.Bashir, S., Abdul Qayyum, M., Husain, A., Bakhsh, A., Ahmed, N., Hussain, M. B., Elshikh, M. S., Alwahibi, M. S., Almunqedhi, B. M. A., Hussain, R., Wang, Y. F., Zhou, Y. & Diao, Z. (2021). Efficiency of different types of biochars to mitigate Cd stress and growth of sunflower (Helianthus; L.) in wastewater irrigated agricultural soil. Saudi Journal of Biological Sciences, 28, 2453-2459. doi: 10.1016/j.sjbs. 2021.01.045.
58.Sun, J., Lian, F., Liu, Z., Zhu, L., & Song, Z. (2014). Biochars derived from various crop straws: Characterization and Cd (II) removal potential. Ecotoxicology and Environmental Safety, 106, 226-231. doi: 10.1016/j. ecoenv.2014.04.042.
59.Wang, L., Ok, Y. S., Tsang, D. C., Alessi, D. S., Rinklebe, J., Wang, H., Masek, O., Hou, R., Wang, X., & Xing, B. (2007). Importance of structural make up of biopolymers for organic contaminant sorption. Environmental Science & Technology, 41, 3559-3565. doi: 10.1021/es062589t.
60.Cheng, J., Hu, S. C., Sun, G. T., Geng, Z. C., & Zhu, M. Q. (2021). The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process. Industrial Crops & Products, 170 (113690), 1-12. doi.org/10.1016/j. indcrop.2021.113690.
61.Heaney, N., Mamman, M., Tahir, H., Al-Gharib, A., & Lin, C. X. (2018). Effects of softwood biochar on the status of nitrogen species and elements of potential toxicity in soils. Ecotoxicology and Environmental Safety, 166, 383-389. doi: 10.1016/j.ecoenv.2018.09.112.
62.Zhao, L., Cao, X., Masek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256-257, 1-9. doi: 10.1016/ j.jhazmat.2013.04.015.
63.Tang, L., Feng, H., Tang, J., Zeng, G., Deng, Y., Wang, J., Liu, Y., & Zhou, Y., (2017). Treatment of arsenic in acid wastewater and river sediment by Fe-Fe2O3 nanobunches: the effect of environmental conditions and reaction mechanism. Water Research, 117, 175-186. doi: 10.1016/j.watres.2017.03.059.
64.Zhang, H., Ke, S., Xia, M., Bi, X., Shao, J., Zhang, S., & Chen, H. (2021). Effects of phosphorous precursors and speciation on reducing bioavailability of heavy metal in paddy soil by engineered biochars. Environmental Pollution, 285 (117459), 1-11. doi: 10.1016/j. envpol.2021.117459.
65.Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., Kua, H. W., Ki, S., Kwon, J. H., Tsang, D. C. W., & Ok, Y. S. )2020(. Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 119 (109582), 1-14. doi: org/10.1016/j.rser.2019.109582.
66.International Biochar Initiative (IBI). (2015). Standardized product definition and product testing guidelines for biochar that is used in soil. www.bio char-international.org/ characterization standard.
67.Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management, 1 (2), 289-303. doi: 10.4155/CMT.10.32.
68.Bahcivanji, L., Gasco, G., Paz-Ferreiro, J., & Mendez, A. (2020). The effect of post-pyrolysis treatment on waste biomass derived hydrochar. Waste Management, 106, 55-61. doi: 10.1016/ j.wasman.2020.03.007.
69.Dieguez-Alonso, A., Anca-Couce, A., Fristak, V., Moreno-Jimenez, E., Bacher, M., Bucheli, T. D., Cimo, G., Conte, P., Hagemann, N., Haller, A., Hilber, I., Husson, O., Kammann, C. I., Kienzl, N., Leifeld, J., Rosenau, T., Soja, G., & Schmidt, H. P. (2019). Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior. Chemosphere, 214, 743-753. doi: 10.1016/j.chemosphere.2018.09. 091.
70.Huang, F., Zhang, S. M., Wu, R. R., Zhang, L., Wang, P., & Xiao, R. B. (2021). Magnetic biochars have lower adsorption but higher separation effectiveness for Cd from aqueous solution compared to nonmagnetic biochars. Environmental Pollution, 275 (116485), 1-11. doi: 10. 1016/j. envpol.2021.116485.