1.Najafi, G., Ghobadian, B., Tavakoli, T., & Yusaf, T. (2009). Potential of bioethanol production from agricultural wastes in Iran. Renewable and Sustainable Energy Reviews, 13 (6-7), 1418-1427. doi:10.1016/j.rser.2008.08. 010.
2.Rendleman, J. A. (1967). Complexes of alkali metals and alkaline-earth metals with carbohydrates. advances in carbohydrate chemistry and biochemistry, 21, 209-271. doi: 10.1016/S0096-5332 (08)60318-5.
3.Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60 (3), 393-404. doi: 10. 1080/03650340. 2013.789870.
4.Chen, D., Wang, X. B., Wang, X. L., Feng, K., Su, J. C., & Dong, J. N. (2020). The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil.
Science of the Total Environment, 714 (136550), 1-8.
doi:10.1016/j. scitotenv.2020.136550.
5.Yadav, A., Ansari, K. B., Simha, P., Gaikar, V. G., & Pandit, A. B. (2016). Vacuum pyrolysed biochar for soil amendment. Resource Efficient Technologies, 2, 177-185. doi: 10.1016/ j.reffit.2016.11.004.
6.Tan, Z., Lin, C. S. K., Ji, X., & Rainey, T. J. (2017). Returning biochar to fields: A review. Applied Soil Ecology, 116, 1-11. doi:10.1016/j.apsoil.2017. 03.017.
7.Jiang, Z., Lian, F., Wang, Z., & Xing, B. (2020). The role of biochars in sustainable crop production and soil resiliency. Journal of Experimental Botany, 71, 520-542. doi:10.1093/jxb/ erz301.
8.Liu, S., Konga, F., Lia, Y., Jianga, Z., Xia, M., & Wub, J. (2020). Mineral-ions modified biochars enhance the stability of soil aggregate and soil carbon sequestration in a coastal wetland soil. Catena, 193 (104618), 1-12. doi:10.1016/ j.catena.2020.104618.
9.Nan, H., Yin, J., Yang, F., Luo, Y.,
Zhao, L., & Cao, X. (2021). Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration. Environmental Pollution, 287 (117566), 10.1016/j.envpol.2021. 117566.
10.Zhao, L., Cao, X. D., Zheng, W., Scott, J. W., Sharma, B. K., & Chen, X. (2016). Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chemistry & Engineering, 4, 1630-636. doi:10.1021/acssuscheme ng.5b01570.
11.Foong, S. Y., Chan, Y. H., Fui Chin, B. L., Mun Lock, S. S., Yee, C. Y., Yiin, C. L., Peng, W., & Lam, S. S. (2022).
Production of biochar from rice straw and its application for wastewater remediation.
Bioresource Technology, 360 (127588), 1-16.
doi:10.1016/j.bior tech.2022 .127588.
12.El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., immerman, A. R., Ahmad, M., Shaheen, S. M., & Ok, Y. S. (2019). Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma, 337, 536-554. doi:10.1016/j.geoderma.2018.09.034.
13.Qin, C., Wang, H., Yuan, X., Xiong, T., Zhang, J., & Zhang, J. (2020). Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices.
Chemical Engineering Journal, 382 (122977), 1-3.
doi:10.1016/j.cej.2019.122977.
14.Xiao, R., Wang, J. J., Gaston, L. A., Zhou, B., Park, J. H., Li, R., Dodla, S. K., & Zhang, Z. (2018). Biochar produced from mineral salt-impregnated chicken manure: Fertility properties and potential for carbon sequestration. Waste Management, 78, 802-810. doi:10.1016/ j.wasman.2018. 06.047.
15.Chen, T., Zhang, Y., Wang, H., Lu, W., Zhou, Z., Zhang, Y., & Ren, L. (2014). Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge.
Bioresourse Technology, 164, 47-54.
doi:10.1016/j.biortech.2014.04.048.
16.Liu, Z., Jia, M., Li, Q., Lu, S., Zhou, D., Feng, L., Hou, Z., & Yu, J. (2023). Comparative analysis of the properties of biochars produced from different pecan feedstocks and pyrolysis temperatures. Industrial Crops & Products, 197 (116638), doi: 10.1016/j. indcrop.2023.116638.
17.Rangabhashiyam, S., & Balasubramanian, P. (2019). The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application-A review. Industrial Crops & Products, 128, 405-423. doi:10.1016/ j.indcrop.2018.11.041.
18.Shaaban, A., Se, S. M., Dimin, M. F., Juoi, J. M., Mohd Husin, M. H., & Mitan, M. M. (2014). Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 107, 31-39. doi:10.1016/j.jaap.2014. 01.021.
19.Almutairi, A. A., Ahmad, M., Rafique, M. I., & Al-Wabel, M. I. (2023). Variations in composition and stability of biochars derived from different feedstock types at varying pyrolysis temperature. Journal of the Saudi Society of Agricultural Sciences, 22, 25-34. doi:10.10.1016 /j.jssas.2022. 05.005.
20.Balmuk, G., Videgain, M., Manya, J. J.,
Duman, G., & Yanik, J. (2023). Effects of pyrolysis temperature and pressure on agronomic properties of biochar.
Journal of Analytical and Applied Pyrolysis,
169 (105858), 1-8.
doi: 10.1016/j.jaap.2023.105858.
21.Luo, Y., Zhao, L., Li, Z., Xu, X., Xu, H., Qiu, H., & Cao, X. (2022). Development of phosphorus composite biochar for simultaneous enhanced carbon sink and heavy metal immobilization in soil.
Science of the Total Environment,
831 (154845), 1-38.
doi:10.1016/ j.scitotenv.2022.154845.
22.Lia, X., Wanga, C., Tiana, J., Liua, J., & Chena, G. (2020). Comparison of adsorption properties for cadmium removal from aqueous solution by Enteromorpha prolifera biochar modified with different chemical Reagents. Environmental research, 186 (109502), 1-8. doi:10.1016/j. envres.2020.109502.
23.Singh Yadav, P. S., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., Ghimire, N., Paudel, P., Paudel, P., Shrestha, J., & Oli, B. (2023). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 11 (100498), 1-13. doi: 10.1016/j. jafr.2023.100498.
24.Khajavi-Shojaei, S., Moezzi, A., Norouzi Masir, M., & Taghavi, M. (2020). Investigating the effect of various surface and chemical modification approaches on corn residue and common reed derived-biochar traits. Applied Soil Research, 9 (2), 73-86. [In Persian]
25.Liu, Z., Tang, J., Ren, X., & Schaeffer, S. M. (2021). Effects of phosphorus modified nZVI-biochar composite on emission of greenhouse gases and changes of microbial community in soil.
Environmental Pollution, 274 (116483), 1-11.
doi:10.1016/ j.envpol.2 021.116483.
26.Ning, K., Gong, K., Chen, H., Cui, Q., Xin, C., Tong, X., Qiu, J., & Zheng, S. (2022). Lead stabilization in soil using P-modified biochars derived from kitchen waste. Environmental Technology & Innovation, 28 (102953), 1-10.
doi: 10.1016/j.eti.2022. 102953.
27.Lee, H. S., & Shin, H. S. (2021). Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods. Journal of Environmental Management, 299 (113651), 1-10. doi: 10.1016/j.jenvman.2021.113651.
28.Yang, Y., Sun, K., Han, L., Jin, J., Sun, H., Yang, Y., & Xing, B. (2018). Effect of minerals on the stability of biochar. Chemosphere, 204, 310-317. doi: 10. 1016/j.chemosphere.2018. 04.057.
29.Yang, S., Wen, Q., & Chen, Z. (2021). Effect of KH2PO4-modified biochar on immobilization of Cr, Cu, Pb, Zn and as during anaerobic digestion of swine manure. Bioresource Technology, 339 (125570), 1-9. doi: 10.1016/j. biortech.2021.125570.
30.Li, W., Cheng, C., He, L., Liu, M., Cao, G., Yang, S., & Ren, N. (2021). Effects of feedstock and pyrolysis temperature of biochar on promoting hydrogen production of ethanol-type fermentation. Science of the Total Environment, 790 (148206), 1-10. doi: 10.1016/j. scitotenv.2021.148206.
31.Singh, B., Camps-Arbestain, M., & Lehmann, J. (Eds.). (2017). Biochar: a guide to analytical methods. Csiro Publishing.
32.Domingues, R. R., Trugilho, P. F., Silva, C. A., Melo, I. C. N., Melo, L. C., Magriotis, Z. M., & Sanchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PlOS ONE, 12 (5), 0176884, 1-19. doi: 10.1371 /journal.pone.0176884.
33.Liu, Q., Jiang, S., Su, X., Zhang, X., Cao, W., & Xu, Y. (2021). Role of the biochar modified with ZnCl2 and
FeCl3 on the electrochemical degradation of nitrobenzene. Chemosphere, 275 (129966), 1-9. doi: 10.1016/j. chemosp here.2021.129966.
34.Yang, X., Ng, W., Wong, B. S. E., Baeg, G. H., Wang, C. H., & Ok, Y. S. (2019). Characterization and ecotoxicological investigation of biochar produced via slow pyrolysis: effect of feedstock composition and pyrolysis conditions. Journal of Hazardous Materials, 365, 178-185. doi: 10.1016/j.jhazmat. 2018.10.047.
35.Zhang, H., Shao, J., Zhang, S., Zhang, X., & Chen, H. (2020). Effect of Phosphorus-Modified Biochars on Immobilization of Cu (II), Cd (II), and As (V) in Paddy Soil, Journal of Hazardous Materials, 390 (121349), 1-24. doi.org/10.1016/j.jhazmat.2019.121349.
36.Rafique, M. I., Usman, A. R. A., Ahmad, M., Sallam, A., & Al-Wabel, M. I. (2020). In situ immobilization of Cr and its availability to maize plants in tannery waste–contaminated soil: effects of biochar feedstock and pyrolysis temperature. Journal of Soils Sediments, 20 (1), 330-339. doi: 10.10 07/s11368-019-02399-z.
37.Sun, J., Benavente, V., Jansson, S., & Masek, O. (2023). Comparative characterisation and phytotoxicity assessment of biochar and hydrochar derived from municipal wastewater microalgae biomass. Bioresource Technology, 386 (129567, 1-11. doi: 10.1016/j.biortech.2023.129567.
38.Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., & Chen, Y. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy, 47, 268-276. doi: 10. 1016/j.biombioe.2012.09.034.
39.Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2018). Investigation of physicochemical characteristics of biochars derived from corn residue and sugarcane bagasse in different pyrolysis temperatures. Iranian Journal of Soil and Water Research, 50(3), 725-739. doi: 10.22059/ijswr.2018.259525.66 7933. [In Persian]
40.Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: science, Technology and implementation, UK, 438 p.
41.Ippolito, J. A., Cui, L., Kammann, C., Wrage-Monnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., and Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2 (4), 421-438. doi: 10.1007/s42773-020-00067-x.
42.Zhao, L., Cao, X., Zheng, W., & Kan, Y. (2014). Phosphorus-assisted biomass thermal conversion: reducing carbon loss and improving biochar stability. Plos one, 9 (12), e115373, doi: 10.13 71/journal.pone.0115373.
43.Wen, E., Yang, X., Chen, H., M. Shaheen, S., Sarkar, B., Xu, S., Song, H., Liang, Y., Rinklebe, J., Hou, D., Li, Y., Wu, F., Pohorely, M., W. C. Wong, J., & Wang, H. (2021). Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil.
Journal of Hazardous Materials, 407 (124344), 1-30.
doi: 10. 1016/j. jhazmat.2020.12434 4.
44.Tao, Q., Li, B., Li, Q., Han, X., Jiang, Y., Jupa, R., Wang, C., & Li, T. (2019). Simultaneous remediation of sediments contaminated with sulfamethoxazole and cadmium using magnesium-modified biochar derived from Thalia dealbata. Science of the Total Environment, 659, 1448-1456. doi: 10.1016/j. scitotenv.2018.12.361.
45.Xu, Y., Bai, T., Li, Q., Yang, H., Yan, Y., Sarkar, B., Lam, S. S., & Bolan, L. (2021). Influence of pyrolysis temperature on the characteristics and lead(II) adsorption capacity of phosphorus-engineered poplar sawdust biochar. Journal of Analytical and Applied Pyrolysis, 154 (105010), 1-11. doi: 10.1016/j.jaap.2020.105010.
46.Ahmad, M., Usman, A. R. A., Al-Faraj, A.S., Ahmad, M., Sallam, A., & Al-Wabel, M.I. (2017). Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere, 194, 327-339. doi: 10. 10.1016/j.chemosphere.2017.1.156.
47.Yusuff, A. S., Lala, M. A., Thompson. Yusuff, K., & Babatunde, E. O. (2022). ZnCl2-modified eucalyptus bark
biochar as adsorbent: preparation, characterization and its application in adsorption of Cr(VI) from aqueous solutions. South African Journal of Chemical Engineering, 42, 138-145. doi: 10.1016/j.sajce.2022.08.002.
48.Devi, P., & Saroha, A. K. (2015). Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni-ZVI magnetic biochar composites synthesized from paper mill sludge.
Chemical Engineering Journal, 271, 195-203.
doi: 10.1016/j.cej.2015.02.087.
49.Xu, X., Zhao, Y., Sima, J., Zhao, L., Masek, O., & Cao, X. (2017). Indispensable role of biochar- inherent mineral constituents in its environmental applications: A review. Bioresource Technology, 241, 887-899. doi: 10.1016/j.biortech.2017.06.023.
50.Rawal, A., Joseph, S. D., Hook, J. M., Chia, C. H., Munroe, P. R., Donne, S., Lin, Y., Phelan, D., Mitchell, D. R. G., Pace, B., Horvat, J., and Webber, J. B. W. (2016). Mineral-Biochar Composites: Molecular Structure and Porosity. Environmental Science & Technology, 50, 7706-7714. doi: 10.1021/acs.est. 6b00685.
51.Jeong, C. Y., Syam, K., Dodla, L., & Wang, J. J. (2015). Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.
Chemosphere, 142, 4-13.
doi: 10.1016/ j.chemosphere.2015.05.084.
52.Kavitha, B., Reddy, P. V. L., Kim, B., Lee, S. S., Pandey, S. K., & Kim, K. H. (2018). Benefits and limitations of biochar amendment in agricultural soils: A review.
Journal of Environmental Management, 227, 146-154.
doi: 10. 1016/j.jenvman.2018.08. 082.
53.Dey, S., Purakayastha, T. J., Sarkar, B., Rinklebe, J., Kumar, S., Chakraborty, R., Datta, A., Lal, K., & Shivay, Y. S. (2023). Enhancing cation and anion exchange capacity of rice straw biochar by chemical modification for increased plant nutrient retention. Science of the Total Environment, 886 (163681), 1-54. doi: 10.1016/j.scitotenv.2023.163681.
54.Reguyal, F., Sarmah, A. K., & Gao, W. (2017). Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. Journal of Hazardous Materials, 321, 868-878. doi: 10.1016/ j.jhazmat.2016.10. 006.
55.Dai, Y., Zheng, H., Jiang, Z., & Xing, B. (2020). Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Science of the Total Environment, 713 (136635), 1-11. doi: 10.1016/j.scitotenv.2020.136635.
56.Li, Y., Yin, H., Guo, Z., Zhu, M., Yan, C., Li, X., & Dang, Z. (2023). Effects of α-Fe2O3 modified chicken manure biochar on the availability of multiple heavy metals and soil biochemical properties. Journal of Environmental Chemical Engineering, 11: (109922), 1-9. doi: 10.1016/j.jece.2023.109922.
57.Bashir, S., Abdul Qayyum, M., Husain, A., Bakhsh, A., Ahmed, N., Hussain, M. B., Elshikh, M. S., Alwahibi, M. S., Almunqedhi, B. M. A., Hussain, R., Wang, Y. F., Zhou, Y. & Diao, Z. (2021). Efficiency of different types of biochars to mitigate Cd stress and growth of sunflower (Helianthus; L.) in wastewater irrigated agricultural soil. Saudi Journal of Biological Sciences, 28, 2453-2459. doi: 10.1016/j.sjbs. 2021.01.045.
58.Sun, J., Lian, F., Liu, Z., Zhu, L., & Song, Z. (2014). Biochars derived from various crop straws: Characterization and Cd (II) removal potential. Ecotoxicology and Environmental Safety, 106, 226-231. doi: 10.1016/j. ecoenv.2014.04.042.
59.Wang, L., Ok, Y. S., Tsang, D. C., Alessi, D. S., Rinklebe, J., Wang, H., Masek, O., Hou, R., Wang, X., & Xing, B. (2007). Importance of structural make up of biopolymers for organic contaminant sorption. Environmental Science & Technology, 41, 3559-3565. doi: 10.1021/es062589t.
60.Cheng, J., Hu, S. C., Sun, G. T., Geng, Z. C., & Zhu, M. Q. (2021). The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process. Industrial Crops & Products, 170 (113690), 1-12. doi.org/10.1016/j. indcrop.2021.113690.
61.Heaney, N., Mamman, M., Tahir, H., Al-Gharib, A., & Lin, C. X. (2018). Effects of softwood biochar on the status of nitrogen species and elements of potential toxicity in soils. Ecotoxicology and Environmental Safety, 166, 383-389. doi: 10.1016/j.ecoenv.2018.09.112.
62.Zhao, L., Cao, X., Masek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256-257, 1-9. doi: 10.1016/ j.jhazmat.2013.04.015.
63.Tang, L., Feng, H., Tang, J., Zeng, G., Deng, Y., Wang, J., Liu, Y., & Zhou, Y., (2017). Treatment of arsenic in acid wastewater and river sediment by Fe-Fe2O3 nanobunches: the effect of environmental conditions and reaction mechanism. Water Research, 117, 175-186. doi: 10.1016/j.watres.2017.03.059.
64.Zhang, H., Ke, S., Xia, M., Bi, X., Shao, J., Zhang, S., & Chen, H. (2021). Effects of phosphorous precursors and speciation on reducing bioavailability of heavy metal in paddy soil by engineered biochars. Environmental Pollution, 285 (117459), 1-11. doi: 10.1016/j. envpol.2021.117459.
65.Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., Kua, H. W., Ki, S., Kwon, J. H., Tsang, D. C. W., & Ok, Y. S. )2020(. Biochar-based adsorbents for carbon dioxide capture: A critical review.
Renewable and Sustainable Energy Reviews,
119 (109582), 1-14.
doi: org/10.1016/j.rser.2019.109582.
66.International Biochar Initiative (IBI). (2015). Standardized product definition and product testing guidelines for biochar that is used in soil. www.bio char-international.org/ characterization standard.
67.Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management, 1 (2), 289-303. doi: 10.4155/CMT.10.32.
68.Bahcivanji, L., Gasco, G., Paz-Ferreiro, J., & Mendez, A. (2020). The effect of post-pyrolysis treatment on waste biomass derived hydrochar. Waste Management, 106, 55-61. doi: 10.1016/ j.wasman.2020.03.007.
69.Dieguez-Alonso, A., Anca-Couce, A., Fristak, V., Moreno-Jimenez, E., Bacher, M., Bucheli, T. D., Cimo, G., Conte, P., Hagemann, N., Haller, A., Hilber, I., Husson, O., Kammann, C. I., Kienzl, N., Leifeld, J., Rosenau, T., Soja, G., & Schmidt, H. P. (2019). Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior. Chemosphere, 214, 743-753. doi: 10.1016/j.chemosphere.2018.09. 091.
70.Huang, F., Zhang, S. M., Wu, R. R., Zhang, L., Wang, P., & Xiao, R. B. (2021). Magnetic biochars have lower adsorption but higher separation effectiveness for Cd from aqueous solution compared to nonmagnetic biochars. Environmental Pollution, 275 (116485), 1-11. doi: 10. 1016/j. envpol.2021.116485.