شناسایی و ارزیابی خطر بالقوه بوم شناختی فلزات سنگین در خاک سطحی نورالدین‌آباد شهرستان گرمسار

نوع مقاله : مقاله کامل علمی پژوهشی

نویسنده

کارشناس مسئول نظارت بر مدیریت پسماند، سازمان محیط زیست، سمنان، ایران.

10.22069/ejsms.2024.20705.2080

چکیده

چکیده
سابقه و هدف: فلزات سنگین از شایع‌ترین آلاینده‌های خاک هستند که می‌توانند خطرات بالقوه‌ای را برای محیط‌زیست و سلامت انسان به‌دنبال داشته باشند. بنابراین، این مطالعه با هدف شناسایی، تعیین و ارزیابی خطر بالقوه بوم شناختی فلزات در نمونه‌های خاک سطحی محل دفع پسماندهای حاصل از فعالیت واحد‌های تصفیه روغن (نورالدین‌آباد شهرستان گرمسار) در سال 1400 انجام شد.
مواد و روش‌ها: در این پژوهش، پس از مطالعه مقدماتی و بررسی میدانی و با توجه به اینکه منطقه مورد مطالعه نسبتا همگن است و هیچ‌گونه چشمه آلودگی در منطقه نبوده و از سالیان دور در تمام این منطقه پسماند‌های خاک رنگبر و لجن اسیدی تخلیه شده است، از روش نمونه‌برداری تصادفی استفاده شد. نمونه‌های مرکب خاک سطحی از 8 ایستگاه منتخب در محدوده مورد مطالعه و از عمق 15-0 سانتی‌متر جمع‌آوری شد و پس از آماده‌سازی و هضم اسیدی نمونه‌ها در آزمایشگاه، محتوی فلزات کادمیم، سرب، نیکل، آرسنیک، جیوه، سلنیوم، کروم، باریم، وانادیم، آنتیموآن، نقره و بریلیم توسط دستگاه جذب اتمی با کوره گرافیتی Varian مدل GBC AA 932 اندازه گیری شد. به‌منظور برآورد شدت آلودگی از فاکتورآلودگی، درجه آلودگی، درجه آلودگی اصلاح شده، شاخص بار آلودگی، شاخص زمین انباشت و شاخص ریسک اکولوژیک استفاده شد. پردازش آماری داده‌ها نیز با استفاده از نرم‌افزار SPSS انجام شد.
یافته‌ها: میانگین غلظت عناصر کادمیم، سرب، نیکل، آرسنیک، کروم و وانادیم در خاک سطحی منطقه نورالدین به ترتیب mg/Kg69/1، 71/66، 43/28، 64/8، 38/25 و 85/18 به‌دست آمد. همچنین کیفیت خاک سطحی منطقه مورد مطالعه بنابر مقادیر درجه آلودگی از "درجه خیلی بالای آلودگی" در ایستگاه‌های 1 تا 5 تا "درجه فوق العاده بالای آلودگی" در ایستگاه‌های 6 و 7 و بنابر مقادیر شاخص زمین انباشت از "غیر آلوده" تا "آلودگی شدید"متغیر بوده است. همچنین نتایج حاصل از بررسی شاخص آلودگی اصلاح شده نشان داد، وضعیت آلودگی سرب و نیکل در درجه متوسط آلودگی و کادمیم، آرسنیک، کروم و وانادیم در درجه بالای آلودگی قرار دارد. علاوه بر این، با محاسبه فاکتور پتانسیل خطر بوم شناختی (Er)، مشخص شد که کادمیم و آرسنیک مهم‌ترین آلاینده‌های مسئول مخاطرات اکولوژیک بوده و روند تغییرات خطر بالقوه بوم شناختی فلزات منطقه به ترتیب سرب< کروم< نیکل< آرسنیک< کادمیم ارزیابی گردید. از طرفی، با توجه به این که میانگین مقدار شاخص خطر بالقوه بوم شناختی (RI) برابر با 35/314 بود، بنابراین خطر بالقوه بوم شناختی تجمعی فلزات در نمونه‌های خاک مورد مطالعه در دسته "مخاطره بوم شناختی شدید" قرار دارد.
نتیجه‌گیری: مقایسه میانگین محتوی فلزات شناسایی شده در نمونه‌های مورد مطالعه با حدود مجاز استاندارد‌های کیفیت منابع خاک سازمان حفاظت محیط زیست ایران نشان داد که مقدار فلزات سرب و کادمیم بیشتر از حد مجاز و مقدار فلزات نیکل، آرسنیک، کروم و وانادیم کمتر از حد مجاز بوده است. بنابراین با توجه به تجاوز میانگین غلظت تعدادی از ترکیبات شناسایی شده از حد مجاز، به منظور حفظ سلامت محیط و انسان به اعمال اقدامات اصلاحی و پاکسازی خاک بر اساس استانداردهای پاکسازی آلودگی خاک سازمان حفاظت محیط زیست ایران توصیه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification and ecological risk assessment of heavy metals in the surface soil of Nuruddin abad in Garmsar

نویسنده [English]

  • zahra lotfi
Expert in charge of monitoring waste management, Environmental Organization, Semnan, Iran.
چکیده [English]

Abstract
Background and Objectives: Heavy metals are the common pollutants of soils, which pose a potential threat to the public and particularly children's health. Therefore, this study was conducted to identify, determine and evaluate potential ecological risk of Cd, Pb, Ni, As,Cr and V in surface soil samples of the disposal site of the wastes resulting from the activity of oil refining units (Nuruddin Abad, Garmsar) in 2022.
Materials and methods: In this research, after the preliminary study, field survey and considering the studied area is relatively homogeneous and there is no source of pollution in the area and for many years wastes of colored soil and acid sludge has been discharged in this area, random sampling method was used. Surface soil compound samples were collected from 8 selected stations in the study area from a depth of 0-15 cm and after preparation and acid digestion of the samples in the laboratory, the content of cadmium, lead, nickel, Arsenic, mercury, selenium, chromium, barium, vanadium, antimony, silver and beryllium were measured by atomic absorption device with Varian graphite furnace model GBC AA 932. In order to estimate the intensity of pollution Contamination factor (Cf), Degree of Contamination (Cd), Modified Degree of Contamination (mCd), Pollution Load Index (PLI), Geoaccumulation index (Igeo) and Ecological Risk Index (RI) were computed. Furthermore, all statistical analyses were performed by SPSS software.
Results: Based on the results, the mean content of Cd, Pb, Ni, As,Cr and V in soil specimens was 1.69, 66.71, 28.43, 8.64, 25.38 and 18.85, Respectively. On the other hand, the soil quality of the study area varied between "very high degree of pollution" in stations 1 to 5 to "extremely high degree of pollution" in stations 6 and 7 based on the Degree of Contamination and "non-polluted" to "severely polluted" based on the geo-accumulation index (I-geo) values. Also, the results of the Modified Degree of Contamination showed that Pb and Ni pollution is in the medium degree of pollution and Cd, As,Cr and V pollution is in the high degree of pollution. In addition, by calculating the ecological risk potential factor (Er), it was determined that Cd and As are the most important pollutants responsible for ecological risks, and the trend of changes in the potential ecological risk of metals in the region was evaluated in the order of Pb<Cr<Ni<As Conclusion: Comparison of the average content of the metals identified in the studied samples with the permissible limits of the soil resource quality standards of Iran's Environmental Protection Organization showed that the amount of lead and cadmium metals is more than the permissible limit and the amount of nickel, arsenic, chromium and vanadium was less than the allowed limit. As the mean contents of a number of identified compounds were higher than the permissible limit, applying corrective measures and clean the soil based on the soil pollution cleaning standards of Iran's Environmental Protection Organization is recommended for the environmental and human health aspects.

کلیدواژه‌ها [English]

  • Geo accumulation index
  • Ecological risk potential
  • Cadmium
  • Arsenic
 1.Lotfi, Z., Mousavi, H. Z., & Sajjadi, S. M. (2020). Covalently bonded dithiocarbamate- terminated hyperbranched polyamidoamine polymer on magnetic graphene oxide nanosheets as an efficient sorbent for preconcentration and separation of trace levels of some heavy metal ions in food samples. Journal of Food Measurement and Characterization, 14(74), 293-302. doi.org/10.1007/s11694-019-00291-5.
2.Lotfi, Z., Mousavi, H. Z., & Sajjadi, S. M. (2016). Covalently bonded double-charged ionic liquid on magnetic graphene oxide as a novel, efficient, magnetically separable and reusable sorbent for extraction of heavy metals from medicine capsules. RSC Advances, 6(93), 90360-90370. doi.org/10.1039/ C6RA19200A.
3.Aali Pour, R., & Rang Zan, N. (2021). Effect of Mycorrhiza and Eggshell on Growth Parameters and Hazard Index of Basil (Ocimum basilicum L.) in Multi-metal Contaminated Soil. Journal of Soil Management and Sustainable Production, 11(4), 1-27. [In Persian] doi:10.22069/ EJSMS.2022.18790.2006.
4.Ghasemian Sorboni, A., Sadegh Zadeh, F., Ghajar Sepanlu, M., Jalili, B., & Emadi, S. M. (2022). Leaching of Pb by dissolved organic carbon derived by sugarcane bagasse and poultry manure. Journal of Soil Management and Sustainable Production, 12(1), 141-158. [In Persian] doi:10.22069/EJSMS. 2022. 18623.1998.
5.Mirzakhani, E., Motaghian, H., & Hosseinpur, A. (2021). Effect of Bagasse Biochars and Sodium chloride Salinity on Fractionation and Availability of Cadmium in a coarse textured Calcareous Soil. Journal of Soil Management and Sustainable Production, 11(3), 99-117. [In Persian] doi:10.22069/EJSMS. 2021. 18515.1985
6.Li, F., Kong, W., Zhao, X., & Pan, Y. (2020). Multifunctional TiO2-based superoleophobic/ superhydrophilic coating for oil–water separation and oil purification. ACS applied materials & interfaces, 12(15), 18074-18083. doi.org/ 10.1021/acsami.9b22625.
7.Ghaffariraad, M., & Ghanbarzadeh Lak, M. (2020). Modeling the effects of hydrological characteristics and design of municipal waste landfill on the leachate rate: a case study of Urmia city. Iranian Journal of Health and Environment, 13(2), 263-282. [In Persian]
8.Pinheiro Pires, A. P., Arauzo, J., Fonts, I., Domine, M. E., Fernández Arroyo, A., Garcia-Perez, M. E., & Garcia-Perez, M. (2019). Challenges and opportunities for bio-oil refining: A review. Energy & Fuels, 33(6), 4683-4720. doi.org/ 10.1021/acs.energyfuels.9b00039.
9.Lotfi, Z., Mousavi, H. Z., & Sajjadi, S. (2017). A hyperbranched polyamidoamine dendrimer grafted onto magnetized graphene oxide as a sorbent for the extraction of synthetic dyes from foodstuff. Microchim Acta, 184, 4503-4512. doi.org/10.1007/s00604-017-2484-9.
10.Haddad, A., Javdanian, H., & Ebrhimpour, F. (2017). Identification and Stabilization of Dispersive Soils: Case Study of Water Transfer Canal of Simindasht-Garmsar. Journal of Engineering Geology, 11(1), 29-50. [In Persian] 10.18869/acadpub.jeg.11. 1.29.
11.Maleki, R., & Azhdari, S. S. (2022). Measuring the ambient air pollutants in Garmsar industrial district. Journal of Air Pollution and Health, 7(1), 51-60. [In Persian] doi.org/10.18502/japh. v7i1.8919.
12.Lotfi, Z. (2022). Identification and determination of amounts of polycyclic aromatic hydrocarbons in the surface soil of Nuruddin Abad in Garmsar. Iranian Journal of Health and Environment, 15(3), 399-418. [In Persian]
13.Lotfi, Z., Mousavi, H. Z., & Sajjadi, S. (2017). Nitrogen doped nano porous graphene as a sorbent for separation and preconcentration trace amounts of Pb, Cd and Cr by Ultrasonic assisted in-syringe dispersive micro solid phase extraction. Applied organometallic chemistry, 32(3), 1-12. doi.org/10.1002/ aoc.4162.
14.Habibi, S., Behrouzi, M., & Nohegar, A. (2022). Measurement and evaluation of heavy metal accumulation in soil and leaves of three tree species (Azadirachta indica, Conocarpus Erectus L. and Prosopis juliflora) in Bandar Abbas. Journal of Environment Science, 21(3), 267-288. [In Persian]
15.Nabavi, S. N., Sajjadi, S. M., & Lotfi, Z. (2020). Novel magnetic nanoparticles as adsorbent in ultrasound-assisted micro-solid-phase extraction for rapid pre-concentration of some trace heavy metal ions in environmental water samples: desirability function. Chemical papers 74, 1143-1159. doi.org/10.1007/s11696-019-00954-z.
16.Naghibi, S., Baghernejad, M., Abtahi, S., Mousavi, A., & Zarei, M. (2023). Evaluation of the effect of different land uses andsoi l physical and chemical characteristics on the amount of Lead in Shiraz urban watershed soils using geostatistics and digital soil mapping. Journal of Watershed Management Research, (Article in Press). [In Persian] doi:10.30466/JFRD.2023.54368.1628.
17.Safari, Y. (2016). Assessment of heavy metals using pollution load index in Zanjan Zinc Industrial Town area. Journal of Soil Management and Sustainable Production, 6(2), 119-133. [In Persian] doi:10.22069/EJSMS. 2016.3146.
18.Safari, Y. (2018). Mapping the overall soil pollution by heavy metals using limitation scores. Journal of Soil Management and Sustainable Production, 6(4), 56-70. [In Persian] doi:10.22069/EJSMS.2017.9174.1552.
19.Galangash, M. M. (2022). Zonation of heavy metal distribution of surface sediments in Anzali wetland Using Geographical Information System (GIS). Iranian Journal of Research in Environmental Health. Winter, 7(4), 323-331.
20.Mirkazehi, Z., & Rezaei, M. (2019). The study of Heavy Metals deposited dust binding Khash City landfill. Journal
of Environmental Science Studies
, 4(1), 1179-1184. [In Persian]
21.Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment international, 88(4), 299-309. doi.org/10.1016/j. envint.2015.12.017.
22.Gilvari, S., Mazloumi Bajestani, A. R., Kashfi, S. A., & Rahim Del, H. R. (2020). Investigating the Pollution of Heavy Metals at the Bottom of Solid Waste Landfill in Yazd. Journal of Environmental Geology, 13(49), 21-35. [In Persian]
23.Karimian, S., Shekoohiyan, S., & Moussavi, G. (2021). Ecological risk assessment of heavy metals in landfill soil of Tehran and its adjacent residential area. Iranian Journal of Health and Environment, 13(4), 621-638. [In Persian]
24.Iranbakhsh, A., Hamdi, S., & Asadi, M. (2008). Flora, life forms and chorotypes of plants of Garmsar region in Semnan province. Pajouhesh & Sazandegi, 21(279), 179-199. [In Persian] doi: sid.ir/paper/19284/en.
25.Yousefifard, M., & Ayoubi, S. (2019). Trace elements contamination in the soils developed on some of igneous and sedimentary rocks in the northwest of Iran (Case study: west Azarbaijan province). Electronic Journal of Soil Management and Sustainable, 9(2), 103-119. [In Persian] doi:sid.ir/ paper/209778/en.
26.Rabieimesbah, A., Sobhanardakani, S., Cheraghi, M., & Lorestani, B. (2022). Analysis of polycyclic aromatic hydrocarbons in surface soil of agricultural lands in Hamedan, Iran. Iranian Journal of Health and Environment, 15(1), 103-120. [In Persian]
27.Ebrahimi, Z., Wali, A., Qadawi, R., & Parast, H. (2018). Investigating the influence of soil texture components and the geometric mean of particle diameter on the spectral response of the soil surface (case study: part of Khatam desert, Yazd). Quantitative geomorphology research, 1(3), 115-28. [In Persian]
28.Herati, E., Mousavi, G. H., Nakhai, F., & Al-Islami, M. (2022). Study on the ecology of the desert flea-killing medicinal plant (Pulicaria gnaphalodes (Vent.) Boiss) in Noferst region of South Khorasan. Plant Researches (Iranian Biology Magazine) (Scientific), 35(3), 556-75. [In Persian]
29.Aghkhani, M., Abbaspour Fard, M., & Lakzian, A. (2010). Estimation of Apparent Soil Electrical Conductivity Using Direct Contact Method. Journal of Water and Soil, 35(3) 556-575. [In Persian] doi:10.22067/JSW.V0I0.5296.
30.Arnold, K., & Page, A. (1986). Methods of soil analysis. pt. 1. Physical and mineralogical methods. Agronomy (USA). no. 9.
31.Mohammadi, S. M., Lorestani, B., Sobhan Ardakani, S., Cheraghi, M., & Tayebi, L. (2021). Source identification and ecological risk assessment of some heavy metals in surface soils collected from the vicinity of Arad-Kouh processing and disposal complex, Tehran, Iran. Environmental Sciences, 19(3), 1-22. [In Persian] doi:10.52547/ ENVS.2021.1005.
32.Ergin, M., Saydam, C., Baştürk, Ö., Erdem, E., & Yörük, R. (1991). Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Chemical geology, 91(3), 269-285. doi.org/10.1016/0009-2541(91)90004-B.
33.Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water research, 14(8), 975-1001. doi.org/ 10.1016/0043-1354(80)90143-8.
34.Mingtao, X., Yan, L., Jiayu, Y., Kaige, L., Yi, L., Feng, L., Daofu, Z., Xiaoqian, F., & Yu, C. (2021). Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environmental Pollution 278, 116911. doi.org/10.1016/j.envpol.2021.116911.
35.Sabet Aghlidi, P., Cheraghi, M., Lorestani, B., Sobhanardakani, S., & Merrikhpour, H. (2020). Analysis, spatial distribution and ecological risk assessment of arsenic and some heavy metals of agricultural soils, case study: South of Iran. Journal of Environmental Health Science and Engineering,18(2), 665-676. [In Persian] doi.org/ 10.1007/s40201-020-00492-x.
36.Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108-118. doi:sid.ir/paper/618491/en.
37.Yi, Y., Kimball, J. S., Jones, L. A., Reichle, R. H., & McDonald, K. C. (2011). Evaluation of MERRA land surface estimates in preparation for the soil moisture active passive mission. Journal of Climate, 24(15), 3797-3816. doi.org/10.1175/2011JCLI4034.1.
38.Zhao, G., Mu, X., Wen, Z., Wang, F., & Gao, P. (2013). Soil erosion, conservation, and eco‐environment changes in the Loess Plateau of China. Land Degradation & Development, 24(5), 499-510. doi.org/10.1002/ldr. 2246.
39.Karimi Shooshtari, A., & Mohammadi Rouzbahani, M. (2022). Heavy metals concentrations (Ni/Pb/Cd) in Spinach (Spinacia oleraceae) with Effect of Atmospheric Desiccation (Case Study: Upper Hand and Downstream of Ramin Ahvaz Power Plant). Journal of Environmental Science and Technology, 24(1), 39-52. [In Persian] doi:sid.ir/ paper/1065028/en.
40.Mohammadi, S. M., Lorestani, B., Sobhan Ardakani, S., Cheraghi, M., & Tayebi, L. (2021). Source identification and ecological risk assessment of some heavy metals in surface soils collected from the vicinity of Arad-Kouh processing and disposal complex, Tehran, Iran. Environmental Sciences, 19(3), 1-22. [In Persian] doi:10.52547/ ENVS.2021.1005.
41.Yosefi, M., & Ayoubi, S. (2019). Trace elements contamination in the soils developed on some of igneous and sedimentary rocks in the northwest of Iran (Case study: west Azarbaijan province). Electronic Journal of Soil Management and Sustainable Production, 9(2), 103-119. [In Persian] doi:sid.ir/ paper/209778/en.
42.Moghtaderi, T., Mahmoudi, SH., Shakeri, A., & Masihabadi, M. (2019). Contamination Evaluation, Health and Ecological risk index assessment of Potential Toxic Elements in the surface soils Case Study: Central Part of Bandar Abbas County. Protection of water
and soil resources (scientific-research),
8(4), 51-66. [In Persian] doi:sid.ir/ paper/232189/en.
43.Sahipour, SH., & Sabzalipour, S. (2021). Study of Contamination of some Heavy Metals in Soils Around Khouzestan Oxin Steel Complex using Contamination Indices. Animal Environment Quarterly, 13(3) 8-391.
[In Persian] doi:10.22034/AEJ. 2020. 246116.2335.