پیامد سوختگی چراگاه‌ها برفراوانی نماتدهای پیرامون ریشه گیاه گون و فستوکا

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استادیار، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران.

2 دانشجوی کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران.

چکیده

چکیده:
سابقه و هدف : نماتدها ریزجاندارانی هستند که نقش بسزایی در کارکرد خاک، چرخه‌ی عناصر و کشاورزی دارند. نماتدها همچنین نشانگرهای خوبی برای بررسی شرایط محیطی هستند. بنابراین مطالعه در زمینه‌ی نماتدها ضروری است آتش‌سوزی به عنوان یک عامل آشفتگی خاک در مقیاس جهانی شناخته شده که در برابر دیگر آشفتگی‌های طبیعی پیامدهای بیشتری بر خاک دارد. تغییر ویژگی‌های فیزیکی، شیمیایی وبیولوژیک خاک، از مشهودترین پیامدهای آتش‌سوزی در اکوسیستم‌های طبیعی به‌ویژه مراتع است. هدف از انجام این پژوهش بررسی اثر پوشش گیاهی و همچنین سوختن بر فراوانی نماتدها بود.
مواد و روش‌ها:جهت بررسی اثر پوشش گیاهی و سوختن بر فراوانی نماتدهای خاک، یک چراگاه در منطقه‌ی حیدره همدان انتخاب گردید که در بخشی از آن پوشش گیاهی سوزانده شده بود نمونه‌های خاک از دو بخش سوخته شده و نسوخته و از سایه-انداز گیاه گون ، گیاه فستوکا و خاک بدون پوشش گیاهی، دو روز پس از یک بارندگی بهاره در اردیبهشت‌ماه 1401 تهیه و پس از تعیین طول و عرض جغرافیایی، نمونه‌ها درون پلاستیک و دبه (جهت حفظ رطوبت) به آزمایشگاه منتقل شدند.خصوصیاتی ازخاک مانند بافت، رطوبت وزنی، ماده‌آلی و فراوانی نماتدها با روش‌های استاندارد تعیین گردید. آزمایشی فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار انجام شد که فاکتور اول عامل سوختن در دو سطح (سوخته و نسوخته) و فاکتور دوم پوشش گیاهی در سه سطح (گیاه گون، گیاه فستوکا وخاک بدون پوشش) با سه تکرار انجام شد.
یافته ها: جدول تجزیه واریانس نشان داد که اثر تیمار پوشش گیاهی و تیمار سوختن و برهم کنش آنها بر فراوانی نماتدها و درصد ماده آلی خاک بسیار معنی‌دار بود.تیمار پوشش گیاهی و تیمار سوختن اثرشان بر درصد رطوبت خاک معنی‌دار نبود. اما برهم کنش پوشش‌گیاهی و سوختن بر درصد رطوبت خاک معنی دار بود. آزمون میانگین فراوانی نماتدها نشان داد که بیشترین فراوانی نماتدها در نمونه‌های نسوخته در سایه‌انداز گون و کمترین آن در خاک بدون پوشش گیاهی مشاهده شد
آزمون میانگین درصد ماده‌آلی نشان داد که تاثیر پوشش گیاهی در نمونه‌های نسوخته بر درصد ماده‌آلی خاک از نظر آماری معنی-دار بود و کمترین درصد ماده آلی در خاک بدون پوشش مشاهده شد میانگین درصد رطوبت در نمونه خاک‌های نسوخته و سوخته اختلاف آماری معنی دار نداشت.و میانگین درصد رطوبت خاک در تیمارهای مختلف پوشش گیاهی نیز بدون اختلاف چشمگیربود.
نتیجه‌گیری: نتایج نشان داد که سوختن مرتع باعث کاهش فراوانی نماتدها و همچنین کاهش ماده‌آلی خاک می‌گردد. اثرپوشش گیاهی برفراوانی نماتدها معنی‌دار بودو جمعیت نماتدها در پوشش گیاهی مختلف و خاک بدون پوشش گیاهی تفاوت چشمگیر آماری با هم داشتند. درصد ماده‌آلی هم تحت تاثیر پوشش گیاهی بود و مقدار آن در پوشش گیاهی مختلف و همچنین خاک بدون پوشش باهم تفاوت چشمگیر آماری نشان داد. درصد رطوبت در خاک نسوخته و سوخته و پوشش‌های گیاهی مختلف تفاوت چشمگیر نداشت. در بین پارامترهای مورد مطالعه آزمایش فقط بین موادآلی خاک و فراوانی نماتدها همبستگی مثبت و معنی‌دار مشاهده گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of burning pastures is the spread of nematodes around the roots of a astragalus and fescue plants.

نویسندگان [English]

  • Masoumeh Ghanbari 1
  • Mohammad Jafari 2
1 assistant professor of soil science department, Faculty of Agriculture, Malayer University
2 Master's student, Department of Soil Science and Engineering, Faculty of Agriculture, Malayer University, Malayer, Iran.
چکیده [English]

Abstract:
Introduction: Nematodes are microorganisms that play a significant role in soil function, cycle of elements and agriculture. Nematodes are also good indicators of environmental conditions. Therefore, it is necessary to study in the field of nematodes. Fire is known as a cause of soil disturbances on a global scale, which has more consequences on the soil than other natural disturbances. Changing the physical, chemical and biological characteristics of soil is one of the most obvious consequences of fire in natural ecosystems, especially pastures. The purpose of this research was to investigate the effect of vegetation and burning on the abundance of nematodes.
Materials and methods: In order to investigate the effect of vegetation cover and burning on the abundance of soil nematodes, a pasture was selected in Haidara region of Hamedan, where part of the vegetation cover was burned. It was prepared from the shade of the goon plant, the fescue plant, and the soil without vegetation, two days after a spring rain in May 1401, and after determining the latitude and longitude, the samples were placed in plastic and a container (to preserve moisture) to They were taken to the laboratory. Soil characteristics such as texture, weight moisture, organic matter and abundance of nematodes were determined by standard methods. A factorial experiment was conducted in the form of a completely randomized design with three replications, where the first factor of the burning factor was done on two levels (burned and unburned) and the second factor of vegetation cover was done on three levels (green plant, fescue plant and bare soil) with three replications.
Findings: The analysis of variance table showed that the effect of vegetation treatment and burning treatment and their interaction on the abundance of nematodes and soil organic matter percentage was very significant. Vegetation treatment and burning treatment had no significant effect on soil moisture percentage. But the interaction of vegetation cover and burning on soil moisture percentage was significant. The average abundance test of nematodes showed that the highest abundance of nematodes was observed in the unburnt samples in the shaded area and the lowest in the soil without vegetation cover. The average percentage of organic matter test showed that the effect of vegetation in unburned samples on the percentage of soil organic matter was statistically significant and the lowest percentage of organic matter was observed in the soil without cover. There was no statistically significant difference in the average percentage of moisture in the samples of unburned and burned soils, and the average percentage of soil moisture in different vegetation treatments was also without significant difference.

Discussion and conclusion: The results showed that burning the pastures reduces the abundance of nematodes and also reduces soil organic matter. The effect of vegetation cover on nematodes was significant and the population of nematodes in different vegetation and soil without vegetation had significant statistical difference. The percentage of organic matter was also affected by the vegetation cover and its amount showed a significant statistical difference in different vegetation cover and also in the soil without cover. The percentage of moisture in unburned and burned soil and different vegetation covers did not differ significantly. Among the parameters studied in the experiment, only a positive and significant correlation was observed between soil organic matter and the abundance of nematodes.

کلیدواژه‌ها [English]

  • Key words: nematode
  • goon
  • fescue
  • soil organic matter
  • burning Community Verified icon
  1. Yeates, G. W. (1987). How plants affect nematodes. In: Macfadyen, A., & Ford, E. D. (ed.). Advances in Ecological Research. Academic Press. pp. 61-113.
  2. Bastow, J. (2020). The impacts of a wildfire in a semiarid grassland on soil nematode abundances over 4 years. Biology and Fertility of Soils, 56, 675-685. doi:10.1007/s00374-020-01441-4.
  3. Pen-Mouratov, S., Ginzburg, O., Whitford, WG., & Steinberger, Y. (2012). Forest fire modifies soil free-living nematode communities in the Biriya Woodland of Northern Israel. Zoological Studies, 51, 1018-1026. doi:10215506-201212-201306060030-201306060030-1018-1026.
  4. Maassoumi, A. A. (1998). Astragalus in the Old World: Check-list. Research Institute of Forests and Rangelands. 617 pages.
  5. 5. Ghahremaninejad, F. (2015). Notes about Astragalus (Leguminosae) in Iran. Annalen des Naturhistorischen Museums in Wien Serie B für Botanik and Zoologie, 117, 279-281.
  6. Majidi, M. M., Mirlohi, A., & Amini, F. (2009). Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinacea Schreb.). Euphytica 167, 323-331. doi:10.1007/s10681-009-9887-6.
  7. Jafari. A., Setavarz. H., & Alizadeh, M. (2006). Genetic variation for and correlations among seed yield and seed components in tall fescue. Journal of New Seeds, 8, 47-65. doi:10.1300/J153v08n04_04.
  8. Williamson, V. M., Gleason, C. A., (2003). Plant–nematode interactions. Current Opinion in Plant Biology, 6, 327-333. doi:10.1016/s1369-5266(03)00059-1.
  9. Neher, D. A., (2001). Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33, 161.
  10. Li, H. Y., Yang, G. D., Shu. H. R., Yang, Y. T., Ye, B. X., Nishida, I., & Zheng, C. C. (2006). Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode. Plant Cell Physiology, 47(1), 154-63. doi:10.1093/pcp/pci231.
  11. Chandra, P., & Enespa, A. (2019). Soil–microbes–plants: Interactions and ecological diversity. Plant Microbe Interface. In: Varma, A., Tripathi, S., & Prasad, R. (ed.). Plant Microbe Interface. Springer, Cham. pp. 145-176. doi:10.1007/978-3-030-19831-2_6.
  12. Niu, X., Zhai, P., Zhang, W., & Gu Y. (2019). Effects of earthworms and agricultural plant species on the soil nematode community in a microcosm experiment. Scientific Reports, 9, 11660. doi:10.1038/s41598-019-48230-0.
  13. Raynaud. T., Pivato, B., Siol, M., Spor, A., & Blouin, M. (2021). Soil microbes drive the effect of plant species and genotypic diversity interaction on productivity. Plant and Soil, 467, 165-180. doi:10.1007/s11104-021-05071-z.
  14. Winding, A., Singh, B. K., Bach, E., Brown, G., Zhang, J., Cooper, M., Dion, P., Mele, P., Eisenhauer, N., & Pena-Neira, S. (2020). State of knowledge of soil biodiversity: Status, challenges, and potentialities. FAO Report, Rome, Italy, 618 pages. doi:10.4060/cb1928en.
  15. Bennett, J. A., & Klironomos, J. (2019). Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytologist, 222, 91-96. doi: 10.1111/nph.15603.
  16. Cortois, R., Veen, G. F., Duyts, H., Abbas, M., Strecker, T., Kostenko, O., Eisenhauer, N., Scheu, S., Gleixner, G., De Deyn, G. B., & van der Putten, W. H. (2017). Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity. Ecosphere, 8, e01719. doi:10.1002/ecs2.1719.
  17. Cesarz, S., Schulz, A. E., Beugnon, R., & Eisenhauer, N. (2019). Testing soil nematode extraction efficiency using different variations of the Baermann-funnel method. Soil Organisms, 91(2), 61-72. doi:10.25674/so91201.
  18. Pourreza, M., Hosseini, S. M., Sinegani, A. A. S., Matinizadeh, M., & Dick, W. A. (2014). Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year. Geoderma, 213, 95-102. doi:10.1016/j.geoderma.2013.07.024.
  19. Knelman, J. E., Graham, E. B., Trahan. N. A., Schmidt, S. K., & Nemergut, D. R. (2015). Fire severity shapes plant colonization effects on bacterial community structure, microbial biomass, and soil enzyme activity in secondary succession of a burned forest. Soil Biology and Biochemistry, 90, 161-168. doi:10.1016/j.soilbio.2015.08.004.
  20. Smith, M. D., van Wilgen, B. W., Burns, C. E., Govender, N., Potgieter, A. L. F., Andelman, S., Biggs, H. C., Botha, J., & Trollope, W. S. W., (2012). Long-term effects of fire frequency and season on herbaceous vegetation in savannas of the Kruger National Park, South Africa. Journal of Plant Ecology, 6, 71-83. doi:10.1093/jpe/rts014.
  21. Treseder, K. K., Mack, M. C., & Cross, A. (2004). Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecological Applications, 14, 1826-1838. doi:10.1890/03-5133.
  22. Comer, J. A., (2019). Effects of grazing and fire on soil microbial communities and hydrological processes in the northern great plains grassland. Electronic Theses and Dissertations. 3520, South Dakota State University, South Dakota, USA.
  23. Bastow, J., (2020). The impacts of a wildfire in a semiarid grassland on soil nematode abundances over 4 years. Biology and Fertility of Soils, 56, 675-685. doi:10.1007/s00374-020-01441-4.
  24. Culpepper, L. S. (2020). Soil physicochemical and microbial responses to high-energy fires in a semi-arid savanna. MSc Thesis, Texas A&M University, Texas, USA.
  25. Pyne, S. J., (2019). Fire: a brief history. University of Washington Press, 204 pages.
  26. Tuininga, A. R., & Dighton, J. (2004). Changes in ectomycorrhizal communities and nutrient availability following prescribed burns in two upland pine oak forests in the New Jersey pine barrens. Canadian Journal of Forest Research, 34(8), 1755-1765. doi:10.1139/x04-037.
  27. Bouyoucos, G. J. (1962). Hydrometer method improved for making particie size analyses of soils. Agronomy Journal, 54(5), 464-465.
  28. Rowell, D. L. (1994). Soil science: methods and applications. Department of Soil Science, University of Reading. 368 pages. doi:10.4324/9781315844855.
  29. Jenkins, W. (1964). A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter, 48(9), 692.
  30. Chandler, C., Cheney, P., Thomas, P., Trabaud, L., & Williams, D. (1983). Fire in forestry. Volume 1. Forest fire behavior and effects. Volume 2. Forest fire management and organization. John Wiley & Sons, Inc.
  31. Scurlock, J. M. O., & Hall, D. O. (1998). The global carbon sink: a grassland perspective. Global Change Biology, 4, 229-233. doi: 10.1046/j.1365-2486.1998.00151.x.
  32. Heydari, J., Ghorbani, S. H., Raeesi, F., & Tahmasebi, P. (2013). Soil carbon accumulation and dynamics after fire in Chaharmahal and Bakhtiari semi-steppe pastures. Water and Soil Science Journal, 23, 249-264. [In Persian]
  33. Gonzalez-Perez. J. A., Gonzalez-Vila. F. J., Almendros, G., & Knicker, H. (2004). The effect of fire on soil organic matter– A review. Environment International, 30, 855-870. doi:10.1016/j.envint.2004.02.003.
  34. Haghighatkhah, N., Hojati, C., Landi, A., & Motamedi, H. (2015). The effect of burning plant residues of sugarcane and corn on different forms Carbon in some soils of Khuzestan province. Water and Soil Science Journal, 4(1), 129-142. [In Persian]
  35. Banej Shafiei, A., Akbarinia, M., Azizi, P., & Eshaghirad, J. (2010). Impacts of fire on some chemical properties of forest soil in north of Iran (Case study: Kheyroudkenar forest). Iranian Journal of Forest and Poplar Research, 18(3), 365-379. [In Persian].
  36. Molavi, R., Baghernejad, M., & Adhami, E. (2009). Effects of forest burning and slash burn on physicochemical properties and clay minerals of top soil. JWSS-Isfahan University of Technology. 49, 99-110. [In Persian].
  37. Heydari, F., Rasoolzadeh, A., Sepaskhah, A., & Asghari, A. (2010). The effect of returning plant residues and burning them on the physical and hydraulic properties of the soil. The second national conference on comprehensive management of water resources. The Second National Conference on Comprehensive Management of Water Resources Exploitation, 1-7. [In Persian]
  38. Abdoos, H., & Saeedizadeh, A. (2016). The effect of fire on the population of nematodes in the surface soil layers of Abar forest, Shahrood city. Iran's Forests and Pastures Protection and Research journal, 14(2), 136-146. doi:10.22092/ijfrpr.2017.109528. [In Persian]
  39. Whitford, W. G., Pen-Mouratov, S., & Steinberger, Y., (2014). The effects of prescribed fire on soil nematodes in an arid juniper savanna. Open Journal of Ecology, 4(2), 66-75. doi:10.4236/oje.2014.42009.
  40. Wikars, L. O., & Schimmel, J. (2001). Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. Forest Ecology and Management, 141(3), 189-200. doi:10.1016/S0378-1127(00)00328-5.
  41. Sohlenius, B., Bostrom, S., & Sandor, A. (1987). Long-term dynamics of nematode communities in arable soil under four cropping systems. Journal of Applied Ecology, 24(1), 131-144.