بررسی رفتار رهاسازی نیتروژن از کودهای نیتروژن دار برپایه بیوچارهای مختلف

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری ، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

2 استاد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

3 استادیار ، گروه علوم خاک، دانشکده کشاورزی، دانشگاه جیرفت، جیرفت، ایران.

چکیده

سابقه و هدف: با اینکه استفاده از کودهای شیمیایی رایج مانند کودهای نیتروژن‌دار باعث بهبود تولیدات کشاورزی می‌شود، اما در همان حال مشکلات جدی زیست محیطی و بار اقتصادی قابل توجهی به دنبال دارد. راندمان پایین استفاده از کودهای شیمیایی نیتروژن‌دار باعث افزایش هزینه‌های تولید محصولات کشاورزی و کاهش عملکرد محصولات می‌شود. آلودگی‌های زیست محیطی استفاده از کودهای شیمیایی به‌خصوص کودهای نیتروژن‌دار باعث شده تا صنعت تولید کود به سمت عرضه کودهای کندرها پیشرفت داشته باشد. اخیراً علاوه بر استفاده از بیوچار به‌عنوان یک اصلاح کننده خاک، از آن در جهت تولید کودهای کندرها مبتنی بر بیوچار استفاده شده است. آزمایش حاضر به‌منظور ارزیابی رفتار رهاسازی نیتروژن از کودهای اوره و نیترات آمونیوم بر پایه بیوچارهای بقایای پوست گردو، بقایای هرس انگور و کلش گندم در آب، در pH های مختلف و در خاک صورت گرفت.
مواد و روش‌ها: به‌منظور بررسی رفتار رهاسازی نیتروژن از کودهای نیتروژن‌دار بر پایه بیوچارهای مختلف آزمایشی اسپلیت پلات به‌صورت کاملاً تصادفی با سه تکرار در آزمایشگاه گروه خاک دانشکده کشاورزی دانشگاه زنجان انجام شد. تیمارهای آزمایش شامل سه نوع بیوچار (بقایای هرس انگور، پوست گردو و کلش گندم) تهیه شده در دو دمای پیرولیز 350 و 650 درجه‌ سلسیوس و دو نوع کود نیتروژن‌دار (20 درصد وزنی) از منبع اوره و نیترات آمونیوم بود که به هر تیمار 10 درصد وزنی رس مونت‌موریلونایت نیز اضافه شد. برای بررسی رفتار کندرها بودن قرص‌های کودی تهیه شده در ارتباط با آزادسازی نیتروژن در آب، مقدار 10 گرم از قرص‌های کودی تهیه شده پس از قرار داده شدن در نایلون با اندازه مش 100 در ظرفی حاوی 200 میلی‌لیتر آب مقطر، اجازه داده شد تا به مدت 56 روز در دمای اتاق در ظرف، شناور بماند. در طول آزمایش در زمان‌های 1، 2، 4، 6، 8، 10، 12، 14، 28، و 56 روز بعد از شروع آزمایش از محلول نمونه‌برداری شد و غلظت نیتروژن تجمعی اندازه‌گیری و درصد رهاسازی آن محاسبه شد.
یافته‌ها: نتایج نشان داد که اثر دما و نوع بیوچار بر چگالی، چگالی ظاهری، pH و EC قرص‌های کودی بر پایه بیوچار معنادار بود. نیتروژن کودهای نیتروژن‌دار بر پایه بیوچار در طی آزمایش در همه بیوچارها به تدریج در آب آزادسازی گردید ولی سرعت آزادسازی آن در ابتدای آزمایش بیشتر بود. میزان آزادسازی نیتروژن در طول آزمایش در قرص‌های کودی بر پایه بیوچار کلش گندم نسبت به بیوچارهای پوست گردو و هرس انگور کمتر بود به‌طوری‌که در انتهای آزمایش درصد آزاد سازی نیتروژن در بیوچار کلش گندم نسبت به بیوچار پوست گردو و بقایای هرس انگور در دمای پیرولیز 350 و 650 درجه سلسیوس) به ترتیب 8 و 7 و 6/6 و 1/5 درصد پایین‌تر بود. کمترین و بیشترین درصد آزادسازی نیتروژن به ترتیب در2=pH و 6=pH در هر دو دمای پیرولیز 350 و 650 درجه سلسیوس اتفاق افتاد. همچنین کمترین و بیشترین درصد آزادسازی نیتروژن در خاک به ترتیب در بیوچار کلش گندم و بقایای هرس انگور در هر دو دمای پیرولیز 350 و 650 درجه سلسیوس مشاهده شد.
نتیجه‌گیری: استفاده از مخلوط کودهای نیتروژن‌دار مانند اوره و نیترات آمونیوم بر پایه بیوچار به‌صورت گرانوله به‌عنوان یک کود کندرها عمل می‌کند که این موضوع می‌تواند راهی مناسب برای ترویج کشاورزی پایدار باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the behavior of Nitrogen release from Nitrogen fertilizers based on different biochars

نویسندگان [English]

  • Amir Khamseh 1
  • Ahmad Golchin 2
  • saeid shafiei 3
1 PhD student, Department of Soil Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
2 Professor, Department of Soil Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
3 Assistant Professor, Department of Soil Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
چکیده [English]

Background and objectives: Although using common chemical fertilizers such as nitrogenous fertilizers improves agricultural production, at the same time, it leads to serious environmental problems and a considerable economic load. The low efficiency of using nitrogen chemical fertilizers increases the production costs of agricultural products and reduces the yield of products. Environmental pollution, the use of chemical fertilizers, especially nitrogen fertilizers, has made the fertilizer production industry progress towards the supply of slow-release fertilizers. Recently, in addition to using biochar as a soil amendment, it has been used to produce biochar-based slow-release fertilizers. The current experiment was conducted to evaluate the behavior of nitrogen release from urea and ammonium nitrate fertilizers based on the biochars of walnut shell residues, grape pruning and wheat stubble in water, different pH and soil.
Materials and methods: To evaluate the effects of nitrogen release from urea and ammonium nitrate fertilizers a factorial experiment with a randomized complete design and three replications was performed in the greenhouse conditions. The experiment treatments included three types of biochar (residues of grape pruning, walnut shell and wheat stubble) at two pyrolysis temperatures of 350 and 650 degrees and nitrogenous fertilizer (20% by weight) from two sources of urea and ammonium nitrate. Ten grams of the prepared fertilizer tablets after being placed in 100 mesh nylon in a container containing 200 ml of distilled water were allowed to let it float for 56 days at room temperature in a container. During the experiment, samples were taken from the solution at 1, 2, 4, 6, 8, 10, 12, 14, 28, and 56 days after the start of the experiment, and the cumulative nitrogen concentration was measured and its release percentage was calculated.
Results: The results showed that the effect of temperature and biochar type on density, apparent density, pH and EC of biochar based fertilizer tablets was significant. Nitrogen of biochar-based nitrogenous fertilizers was gradually released in water during the experiment in all biochars, but its release rate was higher at the beginning of the experiment. The rate of nitrogen release during the experiment in biochar-based fertilizer tablets of wheat stubble was lower compared to walnut shell and grape pruning biochars, so that at the end of the experiment, the percentage of nitrogen release in wheat stubble biochar was 8 (7) and 6.6 (5.1) percent lower, respectively, compared to walnut shell biochar and grape pruning residues at 350 (or 650) pyrolysis temperature. The lowest and highest percentage of nitrogen release occurred in pH 2 and pH 6, respectively, at both pyrolysis temperatures of 350 and 650 degrees. Also, the lowest and highest percentage of nitrogen release in soil was observed in wheat stubble biochar and grape pruning residues at both pyrolysis temperatures of 350 and 650 degrees, respectively.
Conclusion: The using a combination of nitrogenous fertilizers such as urea and ammonium nitrate based on biochar and clay in granulated form acts as a slow-release fertilizer, which can be a proper way to promote sustainable agriculture.

کلیدواژه‌ها [English]

  • Urea
  • Biochar
  • Slow-release fertilizer
  • Ammonium nitrate
1.Ashitha, A., Arakhimol, K. R., & Juothis, M. (2021). Fate of the conventional fertilizers in environment. In book: Controlled release fertilizers for sustainable agriculture, Edited: Lewu, F.B. CRC Press. pp. 25-39.
2.Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environment. 5 (7), 381-387. https://doi. org/10.1890/1540-9295(2007)5 [381:BITB] 2.0.CO;2.
3.Lone, A. H., Najar, G. R., Ganie, M. A., Sofi, J. A., & Ali, T. (2015). Biochar for sustainable soil health: a review of prospects and concerns. Pedosphere.
25 (5), 639-653. https://doi.org/10. 1016/ S1002-0160(15)30045-X.
4.Asai, H., Samson, B. K., Stephan, H. M., Khangsuthor, K. S., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos, 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research. 111 (1-2), 81-84. https:// doi.org/10.1016/j.fcr.2008.10.008.
5.Agegnehu, G., Bass, A. M., Nelson P. N., & Bird, M. I. (2016). Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment.
543 (A), 295-306. https://doi.org/10. 1016/j.scitotenv.2015.11.054.
6.Lee, Y. L., Ahmed, O. H., Wahid, S. A., & Ab-Aziz, Z. F. (2019). Characterization of tablets made from mixture of charred agricultural residues with and without embedded fertilizer. Acta technologica agriculturae. 22 (3), 70-74. https://doi.org/ 10.2478/ata-2019-0013.
7.Gwenzi, W., Chaukura, N., Noubactep, C., & Mukome, F. N. D. (2017). Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management. 197, 732-749. https://doi.org/10.1016/j. jenvman.2017.03.087.
8.Chen, L., Chen, Q., Rao, P. Yan, L., Shakib, A., & Shen, G. (2018). Formulating and optimizing a novel biochar-based fertilizer for simultaneous slow-release of nitrogen and immobilization of cadmium. Sustainability. 10 (8), 2740. https://doi.org/10.3390/su10082740.
9.Kimetu, A., & Lehmann, J. (2010). Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Australian Journal of Soil Research. 48 (7), 577-585. https://doi.org/10.1071/SR10036.
10.Zheng, J., Han, J., Liu, Z., Xia, W., Zhang, X., Li, L., Liu, X., Bian, R., Cheng, K., Zheng, J., & Pan, G. (2017). Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agriculture, Ecosystems & Environment. 241, 70-78. https://doi.org/10.1016/j.agee.2017.02.034.
11.Pereira, E. I., Minussi, F. B., da Cruz,
C. C. T., Bernardi, A. C. C., & Ribeiro, C. (2012). Urea–montmorillonite-extruded nanocomposites: A novel slow-release material. Journal of Agricultural and Food Chemistry. 60 (21), 5267-5272. DOI: 10.1021/jf3001229.
12.Oleszczuk, P., Ćwikła-Bundyra, W., Bogusz, A., Skwarek, E., & Ok, Y. S. (2016). Characterization of nanoparticles of biochars from different biomass. Journal of Analytical and Applied Pyrolysis. 121, 165-172. https://doi.org/ 10.1016/j.jaap.2016.07.017.
13.IBI (International Biochar Initiative). (2010). Guidelines for the development and testing of pyrolysis plants to produce biochar. http://www.biochar international.org/sites/default/ files/ IBI-Pyrolysis-Plant-Guidelines.
14.IBI (International Biochar Initiative). (2015). Standardized product definition and product testing guidelines for biochar that is used in soil (aka IBI Biochar Standards) Version 2.1.
15.Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis. 94, 138-145. https:// doi.org/10.1016/j.jaap.2011.11.018.
16.Rutland, D. W. (1986). Manual for determining physical properties of fertilizer. International Fertilizer Development Center. 91p.
17.Pang, W., Hou, D., Wang, H., Sai, S., Wang, B., Ke, J., Wu, G., Li, Q., & Holtzapple, M. T. (2018). Preparation of microcapsules of slow-release npk compound fertilizer and the release characteristics. Journal of the Brazilian Chemical Society. 29 (11), 2397-2404. https:// doi.org/10. 21577/ 0103-5053. 20180117.
18.Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen total. In: Page, A. L. (Ed.), Methods of Soil Analysis, Part 2. American Society of Agronomy and Soil Science Society of America, Madison. pp. 595-624.
19.Estefan, G., Sommer, R., & Ryan, J. (2013). Methods of soil, plant, and water analysis: A manual for the west asia
and north africa region. International Center for Agricultural Research in the Dry Areas (ICARDA). Beirut, Lebanon. 243p.
20.Watt, G. W., & Chrisp, J. D.
(1954). Spectrophotometric method
for determination of urea. Analytical Chemistry. 26 (3), 452-453. https://doi. org/10.1021/ac60087a006.
21.Keeney, D. R., & Nelson, D. W. (1982). Nitrogen-inorganic forms, In: A. L. Page et al., (Eds). Methods of Soil Analysis. Part 2. American Society of Agronomy. Madison, WI. USA. pp. 643-698.
22.Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. Academic Press. 576p.
23.Salimi, M., Motamedi, E., Motesharezedeh, B., Hosseini, H. M., & Alikhani, H. A. (2020). Starch-g-poly (acrylic acid-co-acrylamide) composites reinforced with natural char nanoparticles toward environmentally benign slow-release urea fertilizers. Journal of Environmental Chemical Engineering. 8 (3), 103765. https://doi.org/10.1016/j.jece.2020.103765.
24.Shamsaddin Saied, M., & Ramroudi, M. (2022). Evaluation of the effect of biochar obtained from different pyrolysis temperatures on the marigold growth under salt stress. Journal of Horticultural Science. 35 (4), 591-604. DOI: 20.1001.1.20084730.1400.35.4.11. [In Persian]
25.Roshan, A., Ghosh, D., & Kumar Maiti, S. (2023). How temperature affects biochar properties for application in coal mine spoils? A meta-analysis. Carbon Research. 2 (3), 2-17. https://doi.org/ 10.1007/s44246-022-00033-1.
26.El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., Zimmerman, A. R., Ahmad, M., Shaheen, S. M., & Sik Ok, Y. (2019). Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma. 337, 536-554. https:// doi.org/10.1016/ j.geoderma. 2018.09.034.
27.Ding, W., Dong, X., Ime, I. M.,
Gao, B., & Ma, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105, 68-74. https://doi. org/10.1016/j.chemosphere.2013.12.042.
28.Jin-Hua, Y., Ren-Kou, X., Ning, W., & Jiu-Yu, L. (2011). Amendment of acid soils with crop residues and biochars. Pedosphere. 21 (3), 302-308. https:// doi.org/10.1016/S1002-0160(11)60130-6.
29.Fooladi Dorhani, M., Shayannejad, M., Mosaddeghi, M. R., & Shariatmadari, H. (2019). The effect of temperature and composition of various raw materials on some physicochemical properties of biochar. 16th Iranian soil science congress.
30.Rehrah, D., Reddy, M. R., Novak, J. M., Bansode, R. R., Schimmel, K. A., Yu, J., Watts, D. W., & Ahmedna, M. (2014). Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. Journal of Analytical and Applied Pyrolysis. 108, 301-309. https://doi.org/ 10.1016/j.jaap.2014.03.008.
31.Gabhi, R., Basile, L., Kirk, D. W., Giorcelli, M., Tagliaferro, A., & Jia,
C. Q. (2020). Electrical conductivity of wood biochar monoliths and its dependence on pyrolysis temperature. Biochar. 2 (3), 369-378.
32.Bakshi, S., Banik, C., Laird, D. A., Smith, R., & Brown, R. C. (2021). Enhancing biochar as scaffolding for slow release of nitrogen fertilizer. ACS Sustainable Chemistry and Engineering. 9 (24), 8222-8231. https://doi.org/10. 1021/acssuschemeng.1c02267.
33.Maghsoodi, M. R., Najafi, N., Reyhanitabar, A., & Oustan, S. (2020). Hydroxyapatite nanorods, hydrochar, biochar, and zeolite for controlled release urea fertilizers. Geoderma.
379, 114644. https://doi.org/10.1016/ j.geoderma.2020.114644.
34.Xiang, A., Qi, R., Wang, M., Zhang, K., Jiang, E., Ren, Y., & Hu, Z. (2021). Study on the infiltration mechanism of molten urea and biochar for a novel fertilizer preparation. Industrial Crops and Products. 153, 112558. https://doi. org/10.1016/j.indcrop.2020.112558.
35.Wang, C., Luo, D., Zhang, X., Huang, R., Cao, Y., Liu, G., Zhang, Y., & Wang, H. (2022). Biochar-based slow-release of fertilizers for sustainable agriculture: a mini review. Environmental Science and Ecotechnology. 10, 100167. https://doi.org/10.1016/j.ese.2022.100167.
36.Shin, J., & Park, S. (2018). Optimization of blended biochar pellet by the use of nutrient releasing model, Appl. Sci.
8 (11), 2274. https://doi.org/10.3390/ app8112274.
37.Shi, W., Ju, Y., Bian, R., Li, L., Joseph, S., Mitchell, D. R., Munroe, P., Taherymoosavi, S., & Pan, G. (2020). Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment. 701, 134424. https:// doi.org/ 10.1016/ j.scitotenv. 2019.134424.
38.Yu, Z., Zhao, J., Hua, Y., Li, X., Chen, Q. & Shen, G. (2021). Optimization of granulation process for binder-free biochar-based fertilizer from digestate and its slowrelease performance. Sustainability. 13 (15), 8573. https:// doi.org/10.3390/su13158573.
39.Cheng, H., Jones, D. L., Hill, P., Bastami, M. S., & Tu, C. L. (2018). Influence of biochar produced from different pyrolysis temperature on nutrient retention and leaching. Archives of Agronomy and Soil Science.
64 (6), 850-859. https://doi.org/10. 1080/03650340.2017.1384545.
40.Manikandan, A., & Subramanian, K. (2015). Ability of urea impregnated biochar fertilizers for securing the slow release of nitrogen in soils–preliminary study. International Journal of Agriculture Sciences. 7 (11), 750-756. DOI:10.9735/0975-3710.7.11.
41.Cen, Z., Wei, L., Muthukumarappan, K., Sobhan, A., & McDaniel, R. (2021). Assessment of a biochar-based controlled release nitrogen fertilizer coated with polylactic acid. Journal of Soil Science and Plant Nutrition.
21 (3), 2007-2019. DOI:10.1007/ s42729-021-00497-x.
42.Ramola, S., Belwal, T., Li, C. J., Wang, Y. Y., Lu, H. H., Yang, S. M., & Zhou, C. H. (2020). Improved lead removal from aqueous solution using novel porous bentonite and calcite-biochar composite. Science of the Total Environment. 709, 136171. https://doi. org/ 10.1016/j.scitotenv.2019.136171.
43.Ashiq, A., Adassooriya, N. M., Sarkar, B., Rajapaksha, A. U., Ok, Y. S., & Vithanage, M. (2019). Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media. Journal of Environmental Management. 236, 428-435. https:// doi.org/ 10.1016/ j.jenvman. 2019.02.006.
44.Premarathna, K. S. D., Rajapaksha,
A. U., Adassoriya, N., Sarkar, B., Sirimuthu, N. M., Cooray, A., Ok, Y. S., & Vithanage, M. (2019). Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media. Journal of Environmental Management. 238, 315-322. https://doi.org/10.1016/ j.jenvman.2019.02.069.
45.Wang, Z., Yang, X., Qin, T., Liang, G., Li, Y., & Xie, X. (2019). Efficient removal of oxytetracycline from aqueous solution by a novel magnetic clay-biochar composite using natural attapulgite and cauliflower leaves. Environmental Science and Pollution Research. 26 (8), 7463-7475. DOI: 10.1007/s11356-019-04172-8.
46.Chen, L., Chen, X. L., Zhou, C. H., Yang, H. M., Ji, S. F., Tong, D. S., Zhong, Z. K., Yu, W. H., & Chu,
M. Q. (2017). Environmental-friendly montmorillonite-biochar composites: facile production and tunable adsorption-release of ammonium and phosphate. Journal of Cleaner Production. 156, 648-659. https://doi.org/10.1016/ j.jclepro.2017.04.050.
47.An, X., Yu, J., Yu, J., Tahmasebi, A., Wu, Z., Liu, X., & Yu, B. (2020). Copyrolysis of biomass, bentonite, and nutrients as a new strategy for the synthesis of improved biochar-
based slow-release fertilizers. ACS Sustainable Chemistry & Engineering.
8 (8), 3181-3190. https://doi.org/10. 1021/acssuschemeng.9b06483.
48.Baki, M., & Abedi-Koupai, J. (2018). Preparation and characterization of a superabsorbent slow release fertilizer with sodium alginate and biochar. Journal of Applied Polymer Science. 135 (10), 45966. https://doi.org/10. 1002/app.45966.
49.Jia, Y., Hu, Z., Ba, Y., & Qi, W. (2021). Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency. Chemical and Biological Technologies in Agriculture. 8 (1), 1-11. DOI: 10. 1186/s40538-020-00205-4.
50.Ye, Z., Zhang, L., Huang, Q., & Tan, Z. (2019). Development of a carbon-based slow release fertilizer treated by bio-oil coating and study on its feedback effect on farmland application. Journal of Cleaner Production. 239, 118085. https://doi.org/10.1016/j.jclepro.2019.118085.