تأثیر اثرات نانو رس بر مقاومت فروروی و رطوبت خاکویژگی‌های فیزیکی خاک و رشد ریشه وو عملکرد گیاه کینوا در دو بافت خاک متفاوت

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان

2 استاد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی‌سینا، همدان، ایران

چکیده

سابقه و هدف: ارزیابی مقاومت فروروی به‌عنوان بخشی از استراتژی‌ مدیریت پایدار برای حفظ کیفیت فیزیکی خاک ضروری می‌باشد. نانورس‌ها به‌عنوان یک اصلاح کننده ارزان و مؤثر نسبت به سایر نانوذرات، نانوذرات طبیعی امیدوارکننده‌ای در اصلاح خاک‌ها و افزایش عملکرد گیاه هستند، که بر مقاومت فروروی و دیگر ویژگی‌های فیزیکی خاک تاثیر دارند. گیاه کینوا به‌عنوان یک محصول استراتژیک جدید و جایگزین گندم متاثر از ویژگی‌های خاک از جمله مقاومت فروروی است. با این وجود تاثیر همزمان نانورس بر ویژگی‌های فیزیکی خاک و به تبع آن بر عملکرد و خصوصیات ریشه گیاه کینوا، تا کنون در هیچ تحقیقی مورد بررسی واقع نشده است. بنابراین این مطالعه با هدف بهبود مقاومت فروروی و نگه‌داشت آب خاک با به کارگیری نانورس مونت‌موریلونیت و افزایش عملکرد و رشد ریشه گیاه کینوا در دو خاک متفاوت انجام شد.

مواد و روش‎ها: در این پژوهش آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی انجام شد. فاکتور اول نانورس مونت‌موریلونیت در دو سطح صفر (شاهد بدون کشت و با کشت) و 3 درصد وزنی و فاکتور دوم خاک در دو سطح خاک لوم شنی و لوم در شش تکرار بود. بذر کینوا در عمق دو سانتی‌متری در خاک تمامی ستون‌ها به جز شاهد بدون کشت، در تاریخ 2 شهریور 1399 در گلخانه دانشکده کشاورزی دانشگاه بوعلی سینا همدان کشت شد. در پایان فصل رشد (18 آذر 1399)، سه تکرار از هر تیمار برای اندازه‌گیری جرم تر و خشک ریشه و عملکرد دانه و همچنین سه تکرار دیگر برای اندازه‌گیری نگه‌داشت آب و مقاومت فروروی خاک انتخاب شد.
یافته‏ها: نتایج نشان داد که کاربرد نانورس مونت‌موریلونیت باعث کاهش جرم خشک ریشه به-میزان 26 و 54 درصد به‌ترتیب در خاک لوم‌شنی و لوم شد. استفاده از نانورس بر افزایش میزان ماندگاری آب در هر دو خاک در مکش‌های ماتریکی 10، 30 و 100 کیلوپاسکال در حد 28٪ - 2٪ بود. مقاومت فروروی در بافت لوم نسبت به بافت لوم شنی در مکش‌های ماتریک 30 و 100 کیلوپاسکال (23٪ - 11٪) پایین‌تر بود. افزایش محتوای آب خاک باعث کاهش نیروهای چسبندگی اعمال شده بین تک تک ذرات خاک و کاهش مقاومت اصطکاکی ناشی از لغزش ذرات خاک در طول نفوذ ریشه‌های در حال رشد می‌شود که در بافت خاک لوم بیشتر بود.

نتیجه‏گیری: کاربرد نانورس در هر دو خاک با تغییر توزیع اندازه منافذ، تخلخل و تراکم خاک باعث افزایش ماندگاری آب در خاک شد. مقاومت خاک بسیار وابسته به رطوبت خاک است و مقاومت فروروی خاک با افزایش رطوبت خاک کاهش می‌یابد. نتایج نشان داد که سطح نانورس با تأمین آب و عناصر غذایی به ریشه باعث افزایش رشد ریشه در خاک لوم شد. در حالی‌که در خاک لوم شنی به دلیل بالا بودن نسبت منافذ درشت، درصد کاربرد نانورس کم بود و تأثیر معنی‌داری نداشت. همچنین با وجود هزینه بالای فعلی نانورس در مقایسه با سایر اصلاح ‌کننده‌هایی مانند بیوچار، سوپرجاذب، نویسندگان بر این باورند که یافته‌های این مطالعه می‌تواند به توسعه روشی برای بهبود و مدیریت کشاورزی پایدار کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Nanoclay on Soil Physical Properties and Yield of Quinoa in Two Different Soil Textures

نویسندگان [English]

  • Elahe Daraei 1
  • Hossein Bayat 2
1 Department of Soil Science and Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
2 Professor, Department of Soil Science and Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Background and Objectives: Evaluation of penetration resistance is necessary as a part of a sustainable management strategy to maintain the physical quality of the soil. Nanoclays are promising naturally occurring nanoparticles in soil amendment due to their low-cost and effective features. Natural nanoparticles are promising in improving soils and increasing plant yield, which have an impact on penetration resistance and other physical properties of soil. The quinoa plant as a new strategic crop and alternative to wheat is affected by the characteristics of the soil, including penetration resistance. However, the simultaneous effect of nanoclay on the physical characteristics of the soil and as a result on the yield and characteristics of the quinoa plant root has not been investigated in any research, so far. The study aimed to improve the penetration resistance and soil water retention with the application of montmorillonite nanoclay and increase the root growth, and yield of quinoa plant in two soil textures.

Materials and Methods: In this study, a factorial experiment with a completely randomized design was conducted. The first factor was montmorillonite nanoclay at two levels of zero (control without cultivation and with cultivation), and 3% by weight, and the second factor was soil at two levels of sandy loam and loam soil textures, in six replicates. Quinoa seeds were planted at a depth of 2 cm in the soil of all the columns except for the control without cultivation treatment, on August 23, 2020, in the greenhouse of the Faculty of Agriculture of Bu-Ali Sina University, Hamedan, Iran. At the end of the growing season (December 8, 2020), 3 replicates of each treatment were selected to measure root wet and dry mass, and seed yield, as well as 3 more replicates were used to measure soil water retention and penetration resistance.

Results: The results showed that the application of montmorillonite nanoclay decreased root mass by 26% and 54% sandy loam and loam soils, respectively. Use of nanoclay increased the retention of soil water content at matric suctions of 10, 30 and 100 kPa in the range of 2% - 28%. The penetration resistance of loam texture was lower compared to sandy loam texture at matric suctions of 30 and 100 kPa (23% - 11%). The increase in the soil water content decreases the cohesive forces applied between individual soil particles and decreased the frictional resistance caused by the sliding of the soil particles during the penetration of the growing roots, which was higher in loam soil texture.

Conclusion: The application of nanoclay in both of soils increased the retention of water in the soil by changing the pore size distribution, porosity, and density of the soil. Soil resistance is highly dependent on soil moisture, and soil penetration resistance decreases with increasing soil moisture content. The results showed that the nanoclay increased root growth in loam soil by providing water and nutrients to the roots. While in sandy loam soil, due to the high ratio of coarse pores, the application percentage of nanoclay was low, and it did not have a significant effect Also, despite the current high cost of nanoclay compared to other modifiers such as biochar, superabsorbent, etc., the authors believe that the findings of this study can help to develop a method to improve and manage sustainable agriculture.

کلیدواژه‌ها [English]

  • Nano montmorillonite
  • Penetration resistance
  • Root mass
  • Soil water retention
1.Benevenute, P. A., de Morais, E. G., Souza, A. A., Vasques, I. C., Cardoso, D. P., Sales, F. R., Severiano, E. C., Homem, B. G., Casagrande, D. R., & Silva, B. M. (2020). Penetration resistance: An effective indicator for monitoring soil compaction in pastures. Ecological Indicators, 117, 106647. doi.org/10.1016/j.ecolind.2020.106647.
2.Tavares Filho, J., Feltran, C. T. M., Oliveira, J. F. D., & Almeida, E. D. (2012). Modelling of soil penetration resistance for an oxisol under no-tillage. Revista Brasileira de Ciência do Solo, 36, 89-95. doi.org/10.1590/S0100-0683 2012000100010.
3.Souza, R., Hartzell, S., Ferraz, A. P. F., de Almeida, A. Q., de Sousa Lima, J. R., Antonino, A. C. D., & de Souza, E. S. (2021). Dynamics of soil penetration resistance in water-controlled environments. Soil and Tillage Research, 205, 104768. doi.org/10.1016/j.still.2020.104768.
4.Kumi, F., Obour, P. B., Arthur, E., Moore, S. E., Asare, P. A., Asiedu, J., Angnuureng, D. B., Atiah, K., Amoah,
K. K., & Amponsah, S. K. (2023). Quantifying root-induced soil strength, measured as soil penetration resistance, from different crop plants and soil types. Soil and Tillage Research, 233, 105811. doi.org/10.1016/j.still.2023.105811.
5.Bengough, A., & Mullins, C. (1991). Penetrometer resistance, root penetration resistance and root elongation rate in two sandy loam soils. Plant and Soil, 131, 59-66. doi.org/10.1007/BF00010420.
6.Whalley, W., To, J., Kay, B., & Whitmore, A. (2007). Prediction of the penetrometer resistance of soils with models with few parameters. Geoderma, 137 (3-4), 370-377. doi.org/10.1016/ j.geoderma.2006.08.029.
7.Kome, G. K., Enang, R. K., Tabi, F. O., & Yerima, B. P. K. (2019). Influence of clay minerals on some soil fertility attributes: A review. Open Journal of Soil Science, 9, 155-188. doi.org/10.4236/ ojss.2019.99010.
8.Ahmadi, H., & Shafiee, O. (2019). Experimental comparative study on the performance of nano-sio2 and microsilica in stabilization of clay. The European Physical Journal Plus, 134, 459. doi.org/10.1140/epjp/i2019-12918-1.
9.Roustaei, M., Sabetraftar, M., Taherabadi, E., & Bayat, M. (2023). Compressive and tensile strength of nano-clay stabilised soil subjected to repeated freeze–thaw cycles. Studia Geotechnica et Mechanica, 45 (3), 221-230. doi.org/10.2478/sgem-2023-0009.
10.Taha, O. M. E., & Taha, M. R. (2016). Soil-water characteristic curves and hydraulic conductivity of nanomaterial-soil-bentonite mixtures. Arabian Journal of Geosciences, 9 (1), 12. doi.org /10.1007/s12517-015-2038-6.
11.Schmitz, R. M. (2006). Can the diffuse double layer theory describe changes in hydraulic conductivity of compacted clays? Geotechnical & Geological Engineering, 24, 1835-1844. doi.org/ 10.1007/s10706-005-3365-2.
12.Xu, L., Ma, M. Y., Lan, T. G., Wang,
Y. X., & Lu, S. F. (2023). Exploring soil water retention hysteresis in the entire suction range and microstructure evolution of loess: The influence of sediment depths. Engineering Geology, 328, 107373. doi.org/10.1016/j.enggeo. 2023.107373.
13.Schaller, J., Frei, S., Rohn, L., & Gilfedder, B. S. (2020). Amorphous silica controls water storage capacity
and phosphorus mobility in soils. Frontiers in Environmental Science, 8, 94. doi.org/10.3389/fenvs.2020.00094.
14.Ballegaard, A. S. R., Sancho, A. I., Zhou, C., Knudsen, N. P. H., Rigby, N. M., Bang-Berthelsen, C. H., Gupta, S., Mackie, A. R., Lübeck, M., & Pilegaard, K. (2023). Allergenicity evaluation of quinoa proteins–a study in brown norway rats. Food and Chemical Toxicology, 182, 114118. doi.org/10. 1016/j.fct.2023.114118.
15.Elfaki, J. T., Gafer, M. A., Sulieman,
M. M., & Ali, M. E. (2016). Hydrometer method against pipette method for estimating soil particle size distribution in some soil types selected from Central Sudan. International Journal of Engineering Research and Advanced Technology, 2 (2), 25-41.
16.Okalebo, J. R., Gathua, K. W., & Woomer, P. L. (2002). Laboratory methods of soil and plant analysis: A working manual second edition. Sacred Africa. 126p.
17.Tomas, G. W. (1996). P. 475-490. In: D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston & M. E. Sumner (Ed.). Soil pH and soil acidity. No. 5, Methods of soil analysis: part 3 chemical methods. Madison, Wisconsin (USA): Soil Sci. Soc. Am. Inc. doi.org/10.2136/sssabookser5.3.c16.
18.Rhoades, J. D. (1996). P. 417-435. In:
D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Ed.). Salinity: Electrical conductivity and total dissolved solids. No. 5, Methods of soil analysis: Part 3 Chemical methods. Madison, Wisconsin (USA): Soil. Sci. Soc. Am. Inc.  doi.org/10.2136/sssabookser5.3.c14.
19.McLean, E. O. (1983). P. 199-224. In: A. L. Page (Ed.). Soil pH and lime requirement. No. 9, Methods of soil analysis: Part 2 Chemical and microbiological properties, Madison, Wisconsin (USA): Soil Sci. Soc. Am. Inc. doi.org/10.2134/agronmonogr9.2.2ed.c12.
20.Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science,
37 (1), 29-38.
21.Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G., & Van Genuchten, M. T. (2010). Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose Zone Journal, 9 (4), 795-820.‏ doi.org/10. 2136/vzj2010.0045.
22.Okuyama, L. A., Federizzi, L. C., & Barbosa Neto, J. F. (2004). Correlation and path analysis of yield and its components and plant traits in wheat. Ciência Rural, 34, 1701-1708. doi.org/ 10.1590/S0103-84782004000600006.
23.Sattelmacher, B. (1987). Methods for measuring root volume and for studying root morphology. Zeitschrift für Pflanzenernährung und Bodenkunde, 150 (1), 54-55. doi.org/10.1002/ jpln. 19871500112.
24.Misra, R., & Ahmed, M. (1987). Root parameters and their measurement. Manual of Irrigation Agronomy Oxford & IBH Publishing Company, 319-326. doi.org/10.1007/978-3-642-67282-8_12.
25.Guo, Z., Li, P., Yang, X., Wang, Z., Lu, B., Chen, W., Wu, Y., Li, G., Zhao, Z., & Liu, G. (2022). Soil texture is an important factor determining how microplastics affect soil hydraulic characteristics. Environment International, 165, 107293. doi.org/10.1016/ j.envint. 2022.107293.
26.Isobe, K., Uziie, K., Hitomi, S., Furuya, U., & Ishii, R. (2012). Agronomic studies on quinoa (chenopodium quinoa willd.) cultivation in japan-effects of day and night temperature after flowering time on seed thickening. Japanese Journal of Crop Science, 81, 167-172. doi.org/10.1626/jcs.81.167.
27.Ahmadi, S. H., Solgi, S., & Sepaskhah, A. R. (2019). Quinoa: A super or pseudo-super crop? Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities. Agricultural Water Management, 225, 105784.‏ doi.org/10. 1016/j.agwat.2019.105784.
28.Mirsafi, S. M., Sepaskhah, A. R., & Ahmadi, S. H. (2024). Quinoa growth and yield, soil water dynamics, root growth, and water use indicators in response to deficit irrigation and planting methods. Journal of Agriculture and Food Research, 15, 100970.‏ doi.org/10.1016/j.jafr.2024.100970.
29.Corneo, P. E., Keitel, C., Kertesz, M. A., & Dijkstra, F. A. (2017). Variation in specific root length among 23 wheat genotypes affects leaf δ13C and yield. Agriculture, ecosystems & environment, 246, 21-29.‏ doi.org/10.1016/j.agee. 2017.05.012.
30.Hssan, S., Inglese, P., Gristina, L., Liguori, G., Novara, A., Louhaichi, M., & Sortino, G. (2019). Root growth and soil carbon turnover in opuntia ficus-indica as affected by soil volume availability. European Journal of Agronomy, 105, 104-110. doi.org/10. 1016/j.eja.2019.02.012.
31.Mirsafi, S. M., Sepaskhah, A. R., & Ahmadi, S. H. (2024). Quinoa growth and yield, soil water dynamics, root growth, and water use indicators in response to deficit irrigation and planting methods. Journal of Agriculture and Food Research, 15, 100970. doi.org/10.1016/j.jafr.2024.100970.
32.Brady, N. C. (2010). The Nature and Properties of Soils. MacMillan Publishing Company. New York. 750p.
33.Hillel, D. (1998). Environmental soil physics: Fundamentals, applications, and environmental considerations: Academic press. Waltham.
34.Zhang, X., Whalley, P., Ashton, R., Evans, J., Hawkesford, M., Griffiths, S., Huang, Z., Zhou, H., Mooney, S., & Whalley, W. (2020). A comparison between water uptake and root length density in winter wheat: Effects of root density and rhizosphere properties. Plant and Soil, 451, 345-356. doi.org/10. 1007/s11104-020-04530-3.
35.Asseng, S., Ritchie, J., Smucker, A., & Robertson, M. (1998). Root growth and water uptake during water deficit and recovering in wheat. Plant and soil, 201, 265-273. doi.org/10.1023/A:1004 317523264.
36.Farajollahi, Z., Eisvand, H. R., Nazarian-Firouzabadi, F., & Nasrollahi, A. H. (2023). Nano-fe nutrition improves soybean physiological characteristics, yield, root features and water productivity in different planting dates under drought stress conditions. Industrial Crops and Products, 198, 116698. doi.org/10.1016/j.indcrop.2023.116698.
37.Buchanan, S., So, H., Kopittke, P., & Menzies, N. (2010). Influence of texture in bauxite residues on void ratio, water holding characteristics, and penetration resistance. Geoderma, 158, 421-426. doi.org/10.1016/j.geoderma.2010.06.016.
38.Pabin, J., Lipiec, J., Włodek, S., Biskupski, A., & Kaus, A. (1998). Critical soil bulk density and strength for pea seedling root growth as related to other soil factors. Soil and Tillage Research, 46, 203-208. doi.org/10. 1016/S0167-1987(98)00098-1.
39.Gupta, S., Schneider, E., Larson, W., & Hadas, A. (1987). Influence of corn residue on compression and compaction behavior of soils. Soil Science Society of America Journal, 51, 207-212. doi.org/ 10.2136/sssaj1987.03615995005100010043x.
40.Ilek, A., Kucza, J., & Szostek, M. (2017). The effect of the bulk density and the decomposition index of organic matter on the water storage capacity of the surface layers of forest soils. Geoderma, 285, 27-34. doi.org/10.1016/ j.geoderma.2016.09.025.
41.Koebernick, N., Daly, K. R., Keyes, S. D., Bengough, A. G., Brown, L. K., Cooper, L. J., George, T. S., Hallett, P. D., Naveed, M., & Raffan, A. (2019). Imaging microstructure of the barley rhizosphere: Particle packing and root hair influences. New Phytologist, 221 (4), 1878-1889. doi.org/10.1111/ nph.15516.
42.Mair, A., Dupuy, L., & Ptashnyk, M. (2023). Can root systems redistribute soil water to mitigate the effects
of drought? Field Crops Research, 300, 109006. doi.org/10.1016/j.fcr. 2023.109006.
43.Anselmucci, F., Andò, E., Viggiani, G., Lenoir, N., Arson, C., & Sibille, L. (2021). Imaging local soil kinematics during the first days of maize root growth in sand. Scientific reports, 11 (1), 22262. doi.org/10.1038/s41598-021-01056-1.
44.Lange, B., Lüescher, P., & Germann, P. F. (2009). Significance of tree roots for preferential infiltration in stagnic soils. Hydrology and earth system sciences, 13 (10), 1809-1821. doi.org/ 10.5194/hess-13-1809-2009.
45.Beff, L., Günther, T., Vandoorne, B., Couvreur, V., & Javaux, M. (2013). Three-dimensional monitoring of soil water content in a maize field using electrical resistivity tomography. Hydrology and Earth System Sciences, 17 (2), 595-609. doi.org/10.5194/hess-17-595-2013.
46.Ali, W., Hussain, S., Chen, J., Hu, F., Liu, J., He, Y., & Yang, M. (2023). Cover crop root-derived organic carbon influences aggregate stability through soil internal forces in a clayey red soil. Geoderma, 429, 116271.‏ doi.org/10. 1016/j.geoderma.2022.116271.
47.AlSaeedi, A. H. (2022). Enhancement of soil water characteristics curve (swcc) and water use efficiency of cucumber (cucumis sativus l.) in sandy soils by using silica nanoparticles. Journal of King Saud University-Science, 34 (4), 101926. doi.org/10.1016/j. jksus.2022.101926.
48.Zhou, B., & Chen, X. (2017). Effect of nano-carbon on water holding capacity in a sandy soil of the loess plateau. Earth Sciences Research Journal, 21 (4), 189-195. doi.org/10.15446/esrj. v21n4.66104.
49.Zhou, B., & Chen, X. (2017). Effect of nano-carbon on water holding capacity in a sandy soil of the loess plateau. Earth Sciences Research Journal,
21 (4), 189-195. doi.org/10.15446/esrj. v21n4.66104.
50.Yakupoglu, T., Oztas, T., Kiray, F., & Demirkol, B. (2015). Effect of some polymers on soil-water losses and sediment size depending on initial aggregate size under sequential simulated rainfall. Procedia Environmental Sciences, 29, 21. doi.org/10.1016/j.proenv.2015.07.134.
51.Zhou, H., Chen, C., Wang, D., Arthur, E., Zhang, Z., Guo, Z., Peng, X., & Mooney, S. J. (2020). Effect of long-term organic amendments on the full-range soil water retention characteristics of a vertisol. Soil and Tillage Research, 202, 104663. doi.org/10.1016/j.still. 2020.104663.
52.Arthur, E., Tuller, M., Moldrup, P., & de Jonge, L. W. (2020). Clay content and mineralogy, organic carbon and cation exchange capacity affect water vapour sorption hysteresis of soil. European Journal of Soil Science, 71 (2), 204-214. doi.org/10.1111/ejss. 12853.
53.Grzesiak, S., Grzesiak, M. T., Filek, W., Hura, T., & Stabryła, J. (2002). The impact of different soil moisture and soil compaction on the growth of triticale root system. Acta Physiologiae Plantarum, 24, 331-342. doi.org/10. 1007/s11738-002-0059-8.
54.Otto, R., Silva, A. D., Franco, H. C. J., Oliveira, E. D., & Trivelin, P. C. O. (2011). High soil penetration resistance reduces sugarcane root system development. Soil and tillage research, 117, 201-210. doi.org/10.1016/j.still. 2011.10.005.
55.Mobeena, S., Thavaprakaash, N., Vaiyapuri, K., Djanaguiraman, M., Geethanjali, S., & Geetha, P. (2023). Influence of different types of soils on the growth and yield of quinoa (chenopodium quinoa wild.). Journal
 of Applied and Natural Science
, 15 (1), 365-370. doi.org/10.31018/jans. v15i1.4321.