1.Benevenute, P. A., de Morais, E. G., Souza, A. A., Vasques, I. C., Cardoso, D. P., Sales, F. R., Severiano, E. C., Homem, B. G., Casagrande, D. R., & Silva, B. M. (2020). Penetration resistance: An effective indicator for monitoring soil compaction in pastures.
Ecological Indicators, 117, 106647.
doi.org/10.1016/j.ecolind.2020.106647.
2.Tavares Filho, J., Feltran, C. T. M., Oliveira, J. F. D., & Almeida, E. D. (2012). Modelling of soil penetration resistance for an oxisol under no-tillage.
Revista Brasileira de Ciência do Solo, 36, 89-95.
doi.org/10.1590/S0100-0683 2012000100010.
3.Souza, R., Hartzell, S., Ferraz, A. P. F., de Almeida, A. Q., de Sousa Lima, J. R., Antonino, A. C. D., & de Souza, E. S. (2021). Dynamics of soil penetration resistance in water-controlled environments.
Soil and Tillage Research, 205, 104768.
doi.org/10.1016/j.still.2020.104768.
4.Kumi, F., Obour, P. B., Arthur, E., Moore, S. E., Asare, P. A., Asiedu, J., Angnuureng, D. B., Atiah, K., Amoah,
K. K., & Amponsah, S. K. (2023). Quantifying root-induced soil strength, measured as soil penetration resistance, from different crop plants and soil types.
Soil and Tillage Research, 233, 105811.
doi.org/10.1016/j.still.2023.105811.
5.Bengough, A., & Mullins, C. (1991). Penetrometer resistance, root penetration resistance and root elongation rate in two sandy loam soils. Plant and Soil, 131, 59-66. doi.org/10.1007/BF00010420.
6.Whalley, W., To, J., Kay, B., & Whitmore, A. (2007). Prediction of the penetrometer resistance of soils with models with few parameters.
Geoderma, 137 (3-4), 370-377.
doi.org/10.1016/ j.geoderma.2006.08.029.
7.Kome, G. K., Enang, R. K., Tabi, F. O., & Yerima, B. P. K. (2019). Influence of clay minerals on some soil fertility attributes: A review.
Open Journal of Soil Science, 9, 155-188.
doi.org/10.4236/ ojss.2019.99010.
8.Ahmadi, H., & Shafiee, O. (2019). Experimental comparative study on the performance of nano-sio2 and microsilica in stabilization of clay. The European Physical Journal Plus, 134, 459. doi.org/10.1140/epjp/i2019-12918-1.
9.Roustaei, M., Sabetraftar, M., Taherabadi, E., & Bayat, M. (2023). Compressive and tensile strength of nano-clay stabilised soil subjected to repeated freeze–thaw cycles. Studia Geotechnica et Mechanica, 45 (3), 221-230. doi.org/10.2478/sgem-2023-0009.
10.Taha, O. M. E., & Taha, M. R. (2016). Soil-water characteristic curves and hydraulic conductivity of nanomaterial-soil-bentonite mixtures. Arabian Journal of Geosciences, 9 (1), 12. doi.org /10.1007/s12517-015-2038-6.
11.Schmitz, R. M. (2006). Can the diffuse double layer theory describe changes in hydraulic conductivity of compacted clays? Geotechnical & Geological Engineering, 24, 1835-1844. doi.org/ 10.1007/s10706-005-3365-2.
12.Xu, L., Ma, M. Y., Lan, T. G., Wang,
Y. X., & Lu, S. F. (2023). Exploring soil water retention hysteresis in the entire suction range and microstructure evolution of loess: The influence of sediment depths.
Engineering Geology, 328, 107373.
doi.org/10.1016/j.enggeo. 2023.107373.
13.Schaller, J., Frei, S., Rohn, L., & Gilfedder, B. S. (2020). Amorphous silica controls water storage capacity
and phosphorus mobility in soils.
Frontiers in Environmental Science, 8, 94.
doi.org/10.3389/fenvs.2020.00094.
14.Ballegaard, A. S. R., Sancho, A. I., Zhou, C., Knudsen, N. P. H., Rigby, N. M., Bang-Berthelsen, C. H., Gupta, S., Mackie, A. R., Lübeck, M., & Pilegaard, K. (2023). Allergenicity evaluation of quinoa proteins–a study in brown norway rats. Food and Chemical Toxicology, 182, 114118. doi.org/10. 1016/j.fct.2023.114118.
15.Elfaki, J. T., Gafer, M. A., Sulieman,
M. M., & Ali, M. E. (2016). Hydrometer method against pipette method for estimating soil particle size distribution in some soil types selected from Central Sudan. International Journal of Engineering Research and Advanced Technology, 2 (2), 25-41.
16.Okalebo, J. R., Gathua, K. W., & Woomer, P. L. (2002). Laboratory methods of soil and plant analysis: A working manual second edition. Sacred Africa. 126p.
17.Tomas, G. W. (1996). P. 475-490. In: D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston & M. E. Sumner (Ed.). Soil pH and soil acidity. No. 5, Methods of soil analysis: part 3 chemical methods. Madison, Wisconsin (USA):
Soil Sci. Soc. Am. Inc. doi.org/10.2136/sssabookser5.3.c16.
18.Rhoades, J. D. (1996). P. 417-435. In:
D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Ed.). Salinity: Electrical conductivity and total dissolved solids. No. 5, Methods of soil analysis: Part 3 Chemical methods. Madison, Wisconsin (USA):
Soil. Sci. Soc. Am. Inc. doi.org/10.2136/sssabookser5.3.c14.
19.McLean, E. O. (1983). P. 199-224. In: A. L. Page (Ed.). Soil pH and lime requirement. No. 9, Methods of soil analysis: Part 2 Chemical and microbiological properties, Madison, Wisconsin (USA):
Soil Sci. Soc. Am. Inc. doi.org/10.2134/agronmonogr9.2.2ed.c12.
20.Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science,
37 (1), 29-38.
21.Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G., & Van Genuchten, M. T. (2010). Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose Zone Journal, 9 (4), 795-820. doi.org/10. 2136/vzj2010.0045.
22.Okuyama, L. A., Federizzi, L. C., & Barbosa Neto, J. F. (2004). Correlation and path analysis of yield and its components and plant traits in wheat.
Ciência Rural, 34, 1701-1708.
doi.org/ 10.1590/S0103-84782004000600006.
24.Misra, R., & Ahmed, M. (1987). Root parameters and their measurement. Manual of Irrigation Agronomy Oxford & IBH Publishing Company, 319-326. doi.org/10.1007/978-3-642-67282-8_12.
25.Guo, Z., Li, P., Yang, X., Wang, Z., Lu, B., Chen, W., Wu, Y., Li, G., Zhao, Z., & Liu, G. (2022). Soil texture is an important factor determining how microplastics affect soil hydraulic characteristics.
Environment International, 165, 107293.
doi.org/10.1016/ j.envint. 2022.107293.
26.Isobe, K., Uziie, K., Hitomi, S., Furuya, U., & Ishii, R. (2012). Agronomic studies on quinoa (chenopodium quinoa willd.) cultivation in japan-effects of day and night temperature after flowering time on seed thickening.
Japanese Journal of Crop Science, 81, 167-172.
doi.org/10.1626/jcs.81.167.
27.Ahmadi, S. H., Solgi, S., & Sepaskhah, A. R. (2019). Quinoa: A super or pseudo-super crop? Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities.
Agricultural Water Management, 225, 105784.
doi.org/10. 1016/j.agwat.2019.105784.
28.Mirsafi, S. M., Sepaskhah, A. R., & Ahmadi, S. H. (2024). Quinoa growth and yield, soil water dynamics, root growth, and water use indicators in response to deficit irrigation and planting methods.
Journal of Agriculture and Food Research, 15, 100970.
doi.org/10.1016/j.jafr.2024.100970.
29.Corneo, P. E., Keitel, C., Kertesz, M. A., & Dijkstra, F. A. (2017). Variation in specific root length among 23 wheat genotypes affects leaf δ13C and yield.
Agriculture, ecosystems & environment, 246, 21-29.
doi.org/10.1016/j.agee. 2017.05.012.
30.Hssan, S., Inglese, P., Gristina, L., Liguori, G., Novara, A., Louhaichi, M., & Sortino, G. (2019). Root growth and soil carbon turnover in opuntia ficus-indica as affected by soil volume availability.
European Journal of Agronomy, 105, 104-110.
doi.org/10. 1016/j.eja.2019.02.012.
31.Mirsafi, S. M., Sepaskhah, A. R., & Ahmadi, S. H. (2024). Quinoa growth and yield, soil water dynamics, root growth, and water use indicators in response to deficit irrigation and planting methods. Journal of Agriculture and Food Research, 15, 100970. doi.org/10.1016/j.jafr.2024.100970.
33.Hillel, D. (1998). Environmental soil physics: Fundamentals, applications, and environmental considerations: Academic press. Waltham.
34.Zhang, X., Whalley, P., Ashton, R., Evans, J., Hawkesford, M., Griffiths, S., Huang, Z., Zhou, H., Mooney, S., & Whalley, W. (2020). A comparison between water uptake and root length density in winter wheat: Effects of root density and rhizosphere properties. Plant and Soil, 451, 345-356. doi.org/10. 1007/s11104-020-04530-3.
35.Asseng, S., Ritchie, J., Smucker, A., & Robertson, M. (1998). Root growth and water uptake during water deficit and recovering in wheat. Plant and soil, 201, 265-273. doi.org/10.1023/A:1004 317523264.
36.Farajollahi, Z., Eisvand, H. R., Nazarian-Firouzabadi, F., & Nasrollahi, A. H. (2023). Nano-fe nutrition improves soybean physiological characteristics, yield, root features and water productivity in different planting dates under drought stress conditions.
Industrial Crops and Products, 198, 116698.
doi.org/10.1016/j.indcrop.2023.116698.
37.Buchanan, S., So, H., Kopittke, P., & Menzies, N. (2010). Influence of texture in bauxite residues on void ratio, water holding characteristics, and penetration resistance. Geoderma, 158, 421-426. doi.org/10.1016/j.geoderma.2010.06.016.
38.Pabin, J., Lipiec, J., Włodek, S., Biskupski, A., & Kaus, A. (1998). Critical soil bulk density and strength for pea seedling root growth as related to other soil factors.
Soil and Tillage Research, 46, 203-208.
doi.org/10. 1016/S0167-1987(98)00098-1.
40.Ilek, A., Kucza, J., & Szostek, M. (2017). The effect of the bulk density and the decomposition index of organic matter on the water storage capacity of the surface layers of forest soils. Geoderma, 285, 27-34. doi.org/10.1016/ j.geoderma.2016.09.025.
41.Koebernick, N., Daly, K. R., Keyes, S. D., Bengough, A. G., Brown, L. K., Cooper, L. J., George, T. S., Hallett, P. D., Naveed, M., & Raffan, A. (2019). Imaging microstructure of the barley rhizosphere: Particle packing and root hair influences. New Phytologist, 221 (4), 1878-1889. doi.org/10.1111/ nph.15516.
42.Mair, A., Dupuy, L., & Ptashnyk, M. (2023). Can root systems redistribute soil water to mitigate the effects
of drought?
Field Crops Research, 300, 109006.
doi.org/10.1016/j.fcr. 2023.109006.
43.Anselmucci, F., Andò, E., Viggiani, G., Lenoir, N., Arson, C., & Sibille, L. (2021). Imaging local soil kinematics during the first days of maize root growth in sand. Scientific reports, 11 (1), 22262. doi.org/10.1038/s41598-021-01056-1.
44.Lange, B., Lüescher, P., & Germann, P. F. (2009). Significance of tree roots for preferential infiltration in stagnic soils. Hydrology and earth system sciences, 13 (10), 1809-1821. doi.org/ 10.5194/hess-13-1809-2009.
45.Beff, L., Günther, T., Vandoorne, B., Couvreur, V., & Javaux, M. (2013). Three-dimensional monitoring of soil water content in a maize field using electrical resistivity tomography.
Hydrology and Earth System Sciences, 17 (2), 595-609.
doi.org/10.5194/hess-17-595-2013.
46.Ali, W., Hussain, S., Chen, J., Hu, F., Liu, J., He, Y., & Yang, M. (2023). Cover crop root-derived organic carbon influences aggregate stability through soil internal forces in a clayey red soil.
Geoderma, 429, 116271.
doi.org/10. 1016/j.geoderma.2022.116271.
47.AlSaeedi, A. H. (2022). Enhancement of soil water characteristics curve (swcc) and water use efficiency of cucumber (
cucumis sativus l.) in sandy soils by using silica nanoparticles.
Journal of King Saud University-Science, 34 (4), 101926.
doi.org/10.1016/j. jksus.2022.101926.
48.Zhou, B., & Chen, X. (2017). Effect of nano-carbon on water holding capacity in a sandy soil of the loess plateau. Earth Sciences Research Journal, 21 (4), 189-195. doi.org/10.15446/esrj. v21n4.66104.
49.Zhou, B., & Chen, X. (2017). Effect of nano-carbon on water holding capacity in a sandy soil of the loess plateau. Earth Sciences Research Journal,
21 (4), 189-195. doi.org/10.15446/esrj. v21n4.66104.
50.Yakupoglu, T., Oztas, T., Kiray, F., & Demirkol, B. (2015). Effect of some polymers on soil-water losses and sediment size depending on initial aggregate size under sequential simulated rainfall.
Procedia Environmental Sciences, 29, 21.
doi.org/10.1016/j.proenv.2015.07.134.
51.Zhou, H., Chen, C., Wang, D., Arthur, E., Zhang, Z., Guo, Z., Peng, X., & Mooney, S. J. (2020). Effect of long-term organic amendments on the full-range soil water retention characteristics of a vertisol.
Soil and Tillage Research, 202, 104663.
doi.org/10.1016/j.still. 2020.104663.
52.Arthur, E., Tuller, M., Moldrup, P., & de Jonge, L. W. (2020). Clay content and mineralogy, organic carbon and cation exchange capacity affect water vapour sorption hysteresis of soil.
European Journal of Soil Science, 71 (2), 204-214.
doi.org/10.1111/ejss. 12853.
53.Grzesiak, S., Grzesiak, M. T., Filek, W., Hura, T., & Stabryła, J. (2002). The impact of different soil moisture and soil compaction on the growth of triticale root system. Acta Physiologiae Plantarum, 24, 331-342. doi.org/10. 1007/s11738-002-0059-8.
54.Otto, R., Silva, A. D., Franco, H. C. J., Oliveira, E. D., & Trivelin, P. C. O. (2011). High soil penetration resistance reduces sugarcane root system development.
Soil and tillage research, 117, 201-210.
doi.org/10.1016/j.still. 2011.10.005.
55.Mobeena, S., Thavaprakaash, N., Vaiyapuri, K., Djanaguiraman, M., Geethanjali, S., & Geetha, P. (2023). Influence of different types of soils on the growth and yield of quinoa (
chenopodium quinoa wild.).
Journal
of Applied and Natural Science, 15 (1), 365-370.
doi.org/10.31018/jans. v15i1.4321.