1.Sengar, R., Gupta, S., Gautam, M., Sharma, A., & Sengar, K. (2008). Occurrence, uptake, accumulation and physiological responses of nickel in plants and its effects on environment.
Research Journal of Phytochemistry, 2(2), 44-60.
doi: rjphyto.2008.44.60.
2.Tuovinen, H., Pohjolainen, E., Lempinen, J., Vesterbacka, D., Read, D., Solatie, D., & Lehto, J. (2016). Behaviour of radionuclides during microbially-induced mining of nickel at Talvivaara, Eastern Finland.
Journal of Environmental Radioactivity, 151, 105-113.
doi: 10. 1016/j.jenvrad.2015.09.022.
3.Ramachandran, V., & D'Souza, S. F. (2013). Adsorption of nickel by Indian soils. Journal of Soil Science and Plant Nutrition, 13(1), 165-173. doi: 10.4067/ S071895162013005000015.
4.Souza, F. G., Campos, M. C. C., Pinheiro, E. N., Lima, A. F. L., BritoFilho, E. G., Cunha, J. M., Santos, E. A. N., & Brito, W. B. M. (2020). Aggregate stability and carbon stocks in Forest conversion to different cropping systems in Southern Amazonas, Brazil.
Carbon Manage, 11(1), 81-96.
doi: 10.1080/17583004. 2019.1694355.
5.Li, S., Wang, M., Zhao, Z., Li, X., Han, Y., & Chen, S. (2018). Alleviation of cadmium phytotoxicity to wheat is associated with Cd re-distribution in soil aggregates as affected by amendments.
RSC Advances, 8(31), 17426-17434.
doi: 10.1039/C8RA03066A.
6.Powell, K. J., Brown, P. L., Byrne, R. H., Gajda, T., Hefter, G., Sjoberg, S., & Wanner, H. (2005). Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part1: The Hg
2+, Cl
−, OH
−, CO
2−, SO
2, and PO
3− aqueous systems.
Pure and Applied Chemistry, 77(4), 739-800.
doi: 10.1351/ pac200577040739.
7.Boostani, H., Hardie, A., Najafi-Ghiri, M., & Khalili, D. (2018). Investigation of cadmium immobilization in a contaminated calcareous soil as influenced by biochars and natural zeolite application. International Journal of Environmental Science and Technology, 15, 2433-2446. doi: 10.1007/s13762-017-1544-3.
8.Ramanayaka, S., Vithanage, M., Alessi, D., Liu, W., Jayasundera, A. C. A., & Ok, Y. S. (2020). Nanobiochar. Production, Properties, and Multifunctional Applications.
Environmental Science, 7(11), 3279-3302.
doi: 10.1039/D0EN 00486C.
9.Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y.S., Niazi, N.K., Xu, S., Yuan, G., Chen, X., Zhang, X., & Liu, D. (2016). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
Journal of Environmental Management, 186(2), 285-292.
doi: 10. 1016/j.jenvman.2016.05.068.
10.Ghrair, A. M., Ingwersen, J., & Streck, T. (2010). Immobilization of heavy metals in soils amended by nan particulate zeolitic tuff: sorption-desorption of cadmium.
Journal of Soil Science and Plant Nutrition, 173 (6), 852-860.
doi: 10.1002/jpln. 200900053.
11.Sadighi, H., & Roshan Zamir, M. A. (2020). Nanoclay Stabilization of Crude Oil Contaminated Soils. AUT Journal of Civil Engineering, 4(2), 175-184. doi: 10.22060/ajce.2019.15771.5550.
12.Murray, H. H. (2007). Applied Clay Mineralogy: Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays. Clays Clay Miner. 55(6), 644-645. doi: 10.1007/BF03406033.
13.Ismadji, S., Soetaredjo, F. E., & ayucitra, A. (2015). Clay materials for environmental remediation. Springer, Amsterdam, 124 p. doi:10.1007/978-3-319-16712-1.
14.Shen, X., Huang, D. Y., Ren, X. F., Zhu, H. H., Wang, S., Xu, C., & Zhu, Q. H. (2016). Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil
. Journal of environmental management, 168, 245-251
. doi: 10.1016/j.jenvman.2015.12.019.
15.Lafdani, E. K., Saarela, T., Laurén, A., Pumpanen, J., & Palviainen, M. (2020). Purification of Forest Clear-Cut Runo Water Using Biochar.
A Meso-Scale Laboratory Column Experiment. Water, 12 (2), 478.
doi: 10.3390/w12020478.
16.Hu, R., Xiao, J., Wang, T., Chen, G., Chen, L., & Tian, X. (2020). Engineering of phosphate functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium.
Chemical Engineering Journal, 122, 388.
doi: 10.1016/j.cej.2019.122388.
17.Naghdi, M., Taheran, M., Brar, S. K., Rouissi, T., Verma, M., Surampalli, R. Y., & Valero, J. R. (2017). A greenmethod for production of nanobiochar by ballmilling- optimization and characterization.
Journal of Cleaner Production, 164 (15), 1394-1405.
doi:10.1016/j.jclepro.2017.07.084.
18.Carroll, D. O., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation.
Advances in Water Resources, 31(51), 104-122.
doi: 10.1016/j. advwatres.2012.02.005.
19.Mahdy, A. M., Zhang, T., Lin, Z. Q., Fathi, N. O., & Badr Eldin, R. M. (2021). Zero-Valent Iron Nanoparticles Remediate Nickel-Contaminated Aqueous Solutions and Biosolids-Amended Agricultural Soil.
Materials, 14 (10), 2655.
doi: 10.3390/ma14102655.
20.Page, A. L., Miller, R. H., & Keeney, D. R. (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties. ASA Madison.
21.Huang, Y., Tan, K., Tang, Q., Liu, F., & Liu, D. (2010). Removal of As (III) and As (V) from drinking water by nanoscale zero-valent iron. In 2010 international conference on challenges in environmental science and computer engineering, 2, 111-114. doi: 10.1109/ CESCE.2010.232.
22.Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar.
Bioresource technology, 107, 419-428.
doi: 10.1016/ j.biortech.2011.11.084.
23.Singh, B., Camps-Arbestain, M., & Lehmann, J. (2017).
Biochar: a guide to analytical methods. CSIRO Publishing, USA, 320 p.
doi: 10.1111/sum.12389.
24.Domingues, R. R., Trugilho, P. F., Silva, C. A., de Melo, I. C. N., Melo, L. C., Magriotis, Z. M., & Sánchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits.
PloS one, 12, 0176884.
doi: 10.1371/journal. pone.0176884.
25.WHO. (1996). Permissible limits of heavy metals in soil and plants, Geneva, Switzerland.
26.Tessier, A. P. G. C., Campbell, P. G., & Bisson, M. J. A. C. (1979). Sequential extraction procedure for the speciation of particulate trace metals.
Analytical chemistry, 51(7), 844-851.
doi: 10. 1021/ac50043a017.
27.Sposito, G., Lund, L., & Chang, A. (1982). Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases 1. Soil Science Society of America Journal, 46(2), 260-264. doi:10.2136/sssaj1982. 03615995004600020009x.
28.Han, F. X., Banin, A., Kingery, W. L., Triplett, G. B., Zhou, L. X., & Zheng, S. J. 2003. New approach to studies of heavy metal redistribution in soil.
Advances in Environmental Research, 8(1), 113-120.
doi: 10.1016/S1093-0191(02)00142-9.
29.Sipos, P. (2009). Distribution and sorption of potentially toxic metals in four forest soils from Hungary. Central European Journal of Geosciences, 1(2), 183-192. doi: 10.2478/v10085-009-0009-4.
30.Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J. B., O'Neill, B., Skjemstad, J. O., Thies, J., Luizao,
F. J., Petersen, J., & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils.
Soil
Science Society of America Journal, 70(5), 1719-1730.
doi: 10.2136/sssaj 2005.0383.
31.Issaabadi, Z., Nasrollahzadeh, M., & Sajadi, S. M. (2017). Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity.
Journal of cleaner production, 142, 3584-3591.
doi: 10. 1016/j.jclepro.2016.10.109.
32.Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28(4), 380-394. doi: 10.1080/15320383. 2019.1592108.
33.Slavutsky, A. M., Bertuzzi, M. A., & Armada, M. (2012). Propriedades de barreira à água de filmes de nanocompósitos de amido e argila.
Brazilian Journal of Food Technology, 15, 208-218.
doi: 10.1590/S19816723 2012005000014.
34.Wu, H., Xie, H., He, G., Guan, Y., & Zhang, Y. (2016). Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite.
Applied Clay Science, 119, 161-169.
doi: 10.1016/j. clay.2015.08.001.
35.Gao, J. F., Li, H. Y., Pan, K. L., & Si,
C. Y. (2016). Green synthesis of nanoscale zero-valent iron using a grape seed extract as a stabilizing agent and the application for quick decolorization of azo and anthraquinone dyes.
RSC Advances, 6(27), 22526-22537.
doi: 10. 1039/C5RA26668H.
36.Usman, A. R., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y. S., Sallam, A. S., & Al-Wabel, M. I. (2016). Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environmental geochemistry and health, 38(2), 511-521. doi: 10.1007/s10653-015-9736-6.
37.Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2019). Chemical fractions and availability of Zn in a calcareous soil in response to biochar amendments. Journal of Soil Science and Plant Nutrition, 19(4), 851-864. doi: 10.1007/s42729-019-00084-1.
38.Tan, X., Liu, Y., Gu, Y., Zeng, G., Wang, X., Hu, X. Sun, Z., & Yang, Z. (2015). Immobilization of Cd (II) in acid soil amended with different biochars with a long term of incubation. Environmental Science and Pollution Research, 22(16), 12597-12604. doi: 10. 1007/s11356-015-4523-6.
39.Boostani, H. R., Hardie, A. G., & Najafi-Ghiri, M. (2020). Chemical fractions and bioavailability of nickel in a Ni-treated calcareous soil amended with plant residue biochars. Archives of Agronomy and Soil Science, 66(6), 730-742. doi: 10.1080/03650340. 2019.1634805.
40.Moradi, N., & Karimi, A. (2021). Fe-Modified common reed biochar reduced cadmium (Cd) mobility and enhanced microbial activity in a contaminated calcareous soil. Journal of Soil Science and Plant Nutrition, 21(1), 329-340. doi: 10.1007/s42729-020-00363-2.
41.Saffari, M., Karimian, N., Ronaghi, A., Yasrebi, J., & Ghasemi-Fasaei, R. (2015). Stabilization of nickel in a contaminated calcareous soil amended with low-cost amendments. Journal of Soil Science and Plant Nutrition, 15(4), 896-913. doi: 10.4067/S0718-95162015005000062.
42.Kabata-Pendias, A. (2000). Trace elements in soils and plants. CRC press.
doi: 10.1201/b10158.43.Jiang, K., Lepak, D. P., Hu, J., & Baer, J. C. (2012). How does human resource management influence organizational outcomes? A meta-analytic investigation of mediating mechanisms.
Academy of management Journal, 55(6), 1264-1294.
doi: 10.5465/amj.2011.0088.
44.Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and soil, 348, 439-451. doi: 10.1007/ s11104-011-0948-y.