تأثیر نانو رس، نانو زغال زیستی نی و نانو ذره آهن صفر ظرفیتی بر توزیع شکل‌های شیمیایی نیکل در یک خاک آهکی آلوده

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد علوم خاک، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 استادیار ، گروه علوم خاک، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 دانشیار، گروه علوم خاک، دانشگاه شهید چمران اهواز، اهواز، ایران.

4 استاد، گروه علوم خاک، دانشگاه شهید چمران اهواز، اهواز، ایران.

چکیده

سابقه و هدف: آلودگی خاک به فلزات سنگین به ویژه در اثر فعالیتهای انسانی به دلیل اثر سمیت آنها بر سلامت، در چند دهه اخیر به عنوان یک مشکل جدی زیست محیطی محسوب می‌شوند. نیکل (Ni) یک از فلزات سنگین است که امروزه به دلیل توسعه صنایع غلظت آن به طور قابل توجهی افزایش یافته است اخیراً استفاده از نانوذرات برای تثبیت فلزات سنگین خاک مانند نیکل به دلیل ویژگی‌های منحصر به فرد جذب و هزینه کم گسترش یافته است. مطالعه حاضر با هدف بررسی تأثیر نانو ذرات مختلف بر توزیع شکل‌های شیمیایی نیکل در خاک آلوده به نیکل بود.

مواد و روش‌ها:. ابتدا یک نمونه خاک مرکب از لایه سطحی خاک آهکی مزرعه کشاورزی دانشکده کشاورزی دانشگاه شهیدچمران اهواز تهیه شد، سپس با غلظت 200 میلی گرم بر کیلوگرم نیکل از منبع نیترات نیکل آلوده گردید. آزمایش به صورت فاکتوریل با دو فاکتور نوع نانو ذره (نانورس (مونتموریلونیت)، نانوزغال زیستی نی و نانوآهن صفر ظرفیتی) و سطوح نانوذره (0، 5/0 و 1 درصد وزنی/وزنی) به مدت 90 روز، در سه تکرار و در قالب طرح کاملاً تصادفی در آزمایشگاه گروه خاکشناسی دانشگاه شهید چمران اهواز انجام شد. بعد از پایان دوره انکوباسیون غلظت کل نیکل، نیکل قابل دسترس و شکل‌های شیمیایی نیکل در خاک اندازه‌ گیری شد.

یافته‌ها: کاربرد نانوجاذب‌ها به ویژه نانوزغال زیستی غلظت شکل تبادلی و کربناتی نیکل را در خاک بطور معنی‌دار کاهش و غلظت شکل‌های آلی و باقیمانده نیکل را افزایش دادند. غلظت نیکل تبادلی در تیمارهای نانو آهن صفر ظرفیتی، نانورس و نانوزغال زیستی نی در مقایسه با تیمار شاهد در سطح 1 درصد به‌ترتیب 86/45، 57/50 و 39/54 درصد کاهش یافت. غلظت نیکل پیوند شده با کربنات‌ها و نیکل باقیمانده در نانوزغال زیستی نی در سطح 1 درصد در مقایسه با تیمار شاهد به ترتیب 61/60 و 64/25 درصد کاهش و افزایش یافت. مقدار شاخص پایداری (IR) نیکل در خاک با کاربرد نانوجاذب‌ها در مقایسه با شاهد به طور معنی‌داری (05/0≥ P) افزایش یافت که بیانگر افزایش مقدار نیکل موجود در جزءهای پایدار (بخش‌های متصل به ماده آلی و متصل به اکسیدهای آهن و منگنز) است. همچنین شاخص تحرک نیکل در خاک شاهد بطور معنی‌دار بیشتر از خاک تیمار شده با نانو آهن صفر ظرفیتی، نانورس و نانوزغال زیستی بود که بیانگر کاهش مقدار نیکل متحرک با کاربرد نانو جاذب‌ها در خاک است.

نتیجه‌گیری: کاربرد نانوجاذب‌ها در خاک آلوده موجب کاهش نیکل در بخش‌های تبادلی و کربناتی و افزایش نیکل در بخش-های پیوند خورده با ماده آلی و اکسیدهای آهن و منگنز نسبت به خاک شاهد گردیدند. بطور کلی نتایج این تحقیق نشان داد کاربرد نانوجاذب‌ها بویژه نانوزغال زیستی می‌توانند سبب تثبیت نیکل شوند. افزودن نانوزغال زیستی به خاک‌های آلوده، به دلیل داشتن کربن آلی بالا و سطح ویژه بالا منجر به کاهش تحرّک نیکل در خاک آلوده می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of nano-clay, common reed nano-biochar, and zero-valent iron nanoparticle on the distribution of nickel chemical forms in a contaminated calcareous soil

نویسندگان [English]

  • Sedigheh Jorfi 1
  • Neda Moradi 2
  • Naeimeh Enayati zamir 3
  • Saeid Hojati 4
1 Department of Soil Science, Faculty of agriculture, Shahid Chamran University of Ahvaz, Ahvaz
2 Assistant Professor, Department of Soil Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 Associate Professor, Department of Soil Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
4 Professor, Department of Soil Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

Background and Objectives: Soil contamination with heavy metals, mainly due to human activities, has been considered as a severe environmental problem in recent decades. Nickel (Ni) is one of the heavy metals which its concentration increased through industrial development. Recently, the use of nanoparticles for immobilization of heavy metal such as nickel in soil has gained attention due to their unique sorption properties and cost-effectiveness. Therefore, the aim of this research was to study the effect of different nanoparticles on the distribution of chemical forms of nickel in soil contaminated with nickel.

Materials and Methods: A composite soil sample was taken from the surface layer (0–30 cm depth) of a calcareous soil from the agricultural farms of the College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran and then it was contaminated with a concentration of 200 mg/kg of nickel from the source of nickel nitrate (Ni(NO3)2.6H2O). A factorial experiment with a completely randomized design was conducted with two factors including nanoparticle types (nano-clay montmorillonite, common reed nano-biochar, and zero-valent iron nanoparticle), and level of their application (0, 0.5, and 1% w/w) for 90 days in three replications under incubation conditions in the laboratory of the Soil Science Department at Shahid Chamran University of Ahvaz. The different chemical forms of nickel were also determined utilizing sequential extraction procedure (26).

Results: The results showed that using nanosorbents at both application amounts of 0.5% and 1% caused a significant decrease in available nickel (DTPA-extractable). Applying of nano adsorbents, especially nano biochar, significantly reduced the concentration of exchangeable and carbonate fractions of nickel in the soil and increased the concentration of organic, exchangeable and residual forms of nickel. The concentration of exchangeable fraction of nickel in zero-valent iron nanoparticle, nano clay, and nano biochar treatments decreased by 45.86, 50.50 and 54.39 %, respectively, compared to the control treatment at the 1% application level. The concentration of nickel bonded with carbonates and residual nickel in reed nanobiochar at the level of 1% decreased and increased by 60.61 and 25.64%, respectively, compared to the control treatment. The value of nickel stability index (IR) in the soil increased significantly (P ≥ 0.05) with the application of nanosorbents compared to the control, which indicates an increase in the amount of nickel in the stable fractions (organic matter and Fe & Mn oxides fractions). Also, the nickel mobility factor in the control soil was significantly higher than the soil treated with zero-valent iron nanoparticle, nanoclay and nano biochar, which indicates the decrease in the amount of mobile nickel with the use of nanosorbents in the soil.

Conclusions: The application of nanosorbents in nickel contaminated soil caused a decrease in nickel in exchangeable and carbonate forms and increased forms of bonded Ni with organic matter and iron and manganese oxides compared to the control soil. In general, the results of this research showed that the use of nanosorbents, especially nano biochar, can immobilize nickel in contaminated soil. Using of nano biochar to contaminated soil, due to its high pH, high organic carbon, and high specific surface area, leads to a decrease in the mobility of nickel in contaminated soil.

کلیدواژه‌ها [English]

  • Mobility factor
  • Nano-biochar
  • Nano-clay
  • Soil pollution
  • Zero-valent iron nanoparticle
1.Sengar, R., Gupta, S., Gautam, M., Sharma, A., & Sengar, K. (2008). Occurrence, uptake, accumulation and physiological responses of nickel in plants and its effects on environment. Research Journal of Phytochemistry, 2(2), 44-60. doi: rjphyto.2008.44.60.
2.Tuovinen, H., Pohjolainen, E., Lempinen, J., Vesterbacka, D., Read, D., Solatie, D., & Lehto, J. (2016). Behaviour of radionuclides during microbially-induced mining of nickel at Talvivaara, Eastern Finland. Journal of Environmental Radioactivity, 151, 105-113. doi: 10. 1016/j.jenvrad.2015.09.022.
3.Ramachandran, V., & D'Souza, S. F. (2013). Adsorption of nickel by Indian soils. Journal of Soil Science and Plant Nutrition, 13(1), 165-173. doi: 10.4067/ S071895162013005000015.
4.Souza, F. G., Campos, M. C. C., Pinheiro, E. N., Lima, A. F. L., BritoFilho, E. G., Cunha, J. M., Santos, E. A. N., & Brito, W. B. M. (2020). Aggregate stability and carbon stocks in Forest conversion to different cropping systems in Southern Amazonas, Brazil. Carbon Manage, 11(1), 81-96. doi: 10.1080/17583004. 2019.1694355.
5.Li, S., Wang, M., Zhao, Z., Li, X., Han, Y., & Chen, S. (2018).  Alleviation of cadmium phytotoxicity to wheat is associated with Cd re-distribution in soil aggregates as affected by amendments. RSC Advances, 8(31), 17426-17434.
doi: 10.1039/C8RA03066A.
6.Powell, K. J., Brown, P. L., Byrne, R. H., Gajda, T., Hefter, G., Sjoberg, S., & Wanner, H. (2005). Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part1: The Hg2+, Cl, OH, CO2−, SO2, and PO3− aqueous systems. Pure and Applied Chemistry, 77(4), 739-800. doi: 10.1351/ pac200577040739.
7.Boostani, H., Hardie, A., Najafi-Ghiri, M., & Khalili, D. (2018). Investigation of cadmium immobilization in a contaminated calcareous soil as influenced by biochars and natural zeolite application. International Journal of Environmental Science and Technology, 15, 2433-2446. doi: 10.1007/s13762-017-1544-3.
8.Ramanayaka, S., Vithanage, M., Alessi, D., Liu, W., Jayasundera, A. C. A., & Ok, Y. S. (2020). Nanobiochar. Production, Properties, and Multifunctional Applications. Environmental Science, 7(11), 3279-3302. doi: 10.1039/D0EN 00486C.
9.Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y.S., Niazi, N.K., Xu, S., Yuan, G., Chen, X., Zhang, X., & Liu, D. (2016). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186(2), 285-292. doi: 10. 1016/j.jenvman.2016.05.068.
10.Ghrair, A. M., Ingwersen, J., & Streck, T. (2010). Immobilization of heavy metals in soils amended by nan particulate zeolitic tuff: sorption-desorption of cadmium. Journal of Soil Science and Plant Nutrition, 173 (6), 852-860. doi: 10.1002/jpln. 200900053.
11.Sadighi, H., & Roshan Zamir, M. A. (2020). Nanoclay Stabilization of Crude Oil Contaminated Soils. AUT Journal of Civil Engineering, 4(2), 175-184. doi: 10.22060/ajce.2019.15771.5550.
12.Murray, H. H. (2007). Applied Clay Mineralogy: Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays. Clays Clay Miner. 55(6), 644-645. doi: 10.1007/BF03406033.
13.Ismadji, S., Soetaredjo, F. E., & ayucitra, A. (2015). Clay materials for environmental remediation. Springer, Amsterdam, 124 p. doi:10.1007/978-3-319-16712-1.
14.Shen, X., Huang, D. Y., Ren, X. F., Zhu, H. H., Wang, S., Xu, C., & Zhu, Q. H. (2016). Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil. Journal of environmental management, 168, 245-251. doi: 10.1016/j.jenvman.2015.12.019.
15.Lafdani, E. K., Saarela, T., Laurén, A., Pumpanen, J., & Palviainen, M. (2020). Purification of Forest Clear-Cut Runo Water Using Biochar. A Meso-Scale Laboratory Column Experiment. Water, 12 (2), 478. doi: 10.3390/w12020478.
16.Hu, R., Xiao, J., Wang, T., Chen, G., Chen, L., & Tian, X. (2020). Engineering of phosphate functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium. Chemical Engineering Journal, 122, 388. doi: 10.1016/j.cej.2019.122388.
17.Naghdi, M., Taheran, M., Brar, S. K., Rouissi, T., Verma, M., Surampalli, R. Y., & Valero, J. R. (2017). A greenmethod for production of nanobiochar by ballmilling- optimization and characterization. Journal of Cleaner Production, 164 (15), 1394-1405. doi:10.1016/j.jclepro.2017.07.084.
18.Carroll, D. O., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 31(51), 104-122. doi: 10.1016/j. advwatres.2012.02.005.
19.Mahdy, A. M., Zhang, T., Lin, Z. Q., Fathi, N. O., & Badr Eldin, R. M. (2021). Zero-Valent Iron Nanoparticles Remediate Nickel-Contaminated Aqueous Solutions and Biosolids-Amended Agricultural Soil. Materials, 14 (10), 2655. doi: 10.3390/ma14102655.
20.Page, A. L., Miller, R. H., & Keeney, D. R. (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties. ASA Madison.
21.Huang, Y., Tan, K., Tang, Q., Liu, F., & Liu, D. (2010). Removal of As (III) and As (V) from drinking water by nanoscale zero-valent iron. In 2010 international conference on challenges in environmental science and computer engineering, 2, 111-114. doi: 10.1109/ CESCE.2010.232.
22.Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource technology, 107, 419-428. doi: 10.1016/ j.biortech.2011.11.084.
23.Singh, B., Camps-Arbestain, M., & Lehmann, J. (2017). Biochar: a guide to analytical methods. CSIRO Publishing, USA, 320 p. doi: 10.1111/sum.12389.
24.Domingues, R. R., Trugilho, P. F., Silva, C. A., de Melo, I. C. N., Melo, L. C., Magriotis, Z. M., & Sánchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS one, 12, 0176884. doi: 10.1371/journal. pone.0176884.
25.WHO. (1996). Permissible limits of heavy metals in soil and plants, Geneva, Switzerland.
26.Tessier, A. P. G. C., Campbell, P. G., & Bisson, M. J. A. C. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry, 51(7), 844-851. doi: 10. 1021/ac50043a017.
27.Sposito, G., Lund, L., & Chang, A. (1982). Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases 1. Soil Science Society of America Journal, 46(2), 260-264. doi:10.2136/sssaj1982. 03615995004600020009x.
28.Han, F. X., Banin, A., Kingery, W. L., Triplett, G. B., Zhou, L. X., & Zheng, S. J. 2003. New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research, 8(1), 113-120. doi: 10.1016/S1093-0191(02)00142-9.
29.Sipos, P. (2009). Distribution and sorption of potentially toxic metals in four forest soils from Hungary. Central European Journal of Geosciences, 1(2), 183-192. doi: 10.2478/v10085-009-0009-4.
30.Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J. B., O'Neill, B., Skjemstad, J. O., Thies, J., Luizao,
F. J., Petersen, J., & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil
Science Society of America Journal
, 70(5), 1719-1730. doi: 10.2136/sssaj 2005.0383.
31.Issaabadi, Z., Nasrollahzadeh, M., & Sajadi, S. M. (2017). Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity. Journal of cleaner production, 142, 3584-3591. doi: 10. 1016/j.jclepro.2016.10.109.
32.Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28(4), 380-394. doi: 10.1080/15320383. 2019.1592108.
33.Slavutsky, A. M., Bertuzzi, M. A., & Armada, M. (2012). Propriedades de barreira à água de filmes de nanocompósitos de amido e argila. Brazilian Journal of Food Technology, 15, 208-218. doi: 10.1590/S19816723 2012005000014.
34.Wu, H., Xie, H., He, G., Guan, Y., & Zhang, Y. (2016). Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite. Applied Clay Science, 119, 161-169. doi: 10.1016/j. clay.2015.08.001.
35.Gao, J. F., Li, H. Y., Pan, K. L., & Si,
C. Y. (2016). Green synthesis of nanoscale zero-valent iron using a grape seed extract as a stabilizing agent and the application for quick decolorization of azo and anthraquinone dyes. RSC Advances, 6(27), 22526-22537. doi: 10. 1039/C5RA26668H.
36.Usman, A. R., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y. S., Sallam, A. S., & Al-Wabel, M. I. (2016). Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environmental geochemistry and health, 38(2), 511-521. doi: 10.1007/s10653-015-9736-6.
37.Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2019). Chemical fractions and availability of Zn in a calcareous soil in response to biochar amendments. Journal of Soil Science and Plant Nutrition, 19(4), 851-864. doi: 10.1007/s42729-019-00084-1.
 
 
38.Tan, X., Liu, Y., Gu, Y., Zeng, G., Wang, X., Hu, X. Sun, Z., & Yang, Z. (2015). Immobilization of Cd (II) in acid soil amended with different biochars with a long term of incubation. Environmental Science and Pollution Research, 22(16), 12597-12604. doi: 10. 1007/s11356-015-4523-6.
39.Boostani, H. R., Hardie, A. G., & Najafi-Ghiri, M. (2020). Chemical fractions and bioavailability of nickel in a Ni-treated calcareous soil amended with plant residue biochars. Archives of Agronomy and Soil Science, 66(6), 730-742. doi: 10.1080/03650340. 2019.1634805.
40.Moradi, N., & Karimi, A. (2021). Fe-Modified common reed biochar reduced cadmium (Cd) mobility and enhanced microbial activity in a contaminated calcareous soil. Journal of Soil Science and Plant Nutrition, 21(1), 329-340. doi: 10.1007/s42729-020-00363-2.
41.Saffari, M., Karimian, N., Ronaghi, A., Yasrebi, J., & Ghasemi-Fasaei, R. (2015). Stabilization of nickel in a contaminated calcareous soil amended with low-cost amendments. Journal of Soil Science and Plant Nutrition, 15(4), 896-913. doi: 10.4067/S0718-95162015005000062.
42.Kabata-Pendias, A. (2000). Trace elements in soils and plants. CRC press. doi: 10.1201/b10158.43.Jiang, K., Lepak, D. P., Hu, J., & Baer, J. C. (2012). How does human resource management influence organizational outcomes? A meta-analytic investigation of mediating mechanisms. Academy of management Journal, 55(6), 1264-1294. doi: 10.5465/amj.2011.0088.
44.Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and soil, 348, 439-451. doi: 10.1007/ s11104-011-0948-y.