ارزیابی تاثیر تغییر کاربری اراضی مرتعی به کشاورزی بر کیفیت فیزیکی خاک در یک منطقه نیمه خشک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

2 دانشیار، گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

3 دانشیار ، گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

سابقه و هدف: تغییر کاربری مرتع به اراضی کشاورزی از چالش‌های مهم در مدیریت پایدار منابع طبیعی است که می‌تواند تاثیر زیادی بر توانایی تولید خاک و کیفیت فیزیکی آن داشته باشد. بسیاری از نقش‌ها و عملکردهای خاک در ارتباط نزدیک با کیفیت فیزیکی خاک بوده و ارزیابی دقیق و ارتقاء شرایط فیزیکی خاک اهمیت بسیاری در حفظ عملکرد آن در زیست‌بوم‌های مرتعی و کشاورزی دارد. این پژوهش با هدف بررسی تاثیر تغییر کاربری مرتع به کشاورزی بر کیفیت فیزیکی خاک و شناسایی مهمترین ویژگی‌های فیزیکی خاک متاثر از این تغییر کاربری، در بخش از اراضی نیمه‌خشک استان زنجان انجام شد.
مواد و روش‌ها: این پژوهش در سه منطقه مجاور با تاریخچه کاربری متفاوت شامل اراضی با کاربری مرتع، اراضی که در کمتر از 10 سال گذشته از مرتع به کشاورزی دیم تغییر کاربری یافته‌اند و اراضی که بیش از 30 سال از مرتع به کشاورزی دیم تغییر کاربری یافته‌اند، انجام شد. نمونه‌برداری خاک از پانزده سایت از دو عمق 0-15 و 15-30 سانتی‌متر انجام شد. از هر عمق نمونه‌های خاک دست‌خورده و دست‌نخورده جمع‌آوری و برخی ویژگی‌های خاک با استفاده از روش‌های استاندارد آزمایشگاهی اندازه‌گیری شد. از آنالیز تشخیص به منظور تعیین مهمترین ویژگی‌های خاک متاثر از تغییر کاربری اراضی استفاده شد.
یافته‌ها: تغییر کاربری تاثیر قابل توجهی بر تخلخل کل خاک و تخلخل درشت و ظرفیت تهویه‌ایی خاک، هدایت هیدرولیکی خاک، شاخص پایداری ساختمان، درجه تراکم خاک، مقدار کربن آلی، هدایت الکتریکی، مقدار سدیم خاک و کربوهیدرات قابل استخراج بااسید و آب داغ داشت. همبستگی بالایی(6/0r>) بین تخلخل کل خاک، تخلخل درشت و ظرفیت تهویه‌ای خاک، شاخص ساختمان خاک و مقدار ماده آلی خاک مشاهده شد. کربوهیدرات‌های قابل استخراج با اسید و آّب داغ همبستگی بالایی با شناسه‌های مرتبط با کیفیت ساختمانی خاک از جمله شاخص پایداری ساختمان خاک، ویژگی‌های مرتبط با تخلخل خاک و خاکدانه‌سازی داشتند. نتایج تجزیه تشخیص نشان داد که تغییر کاربری اراضی بیشترین تاثیر را بر ویژگی‌های کربوهیدرات قابل استخراج با اسید و آب داغ ، ظرفیت تهویه‌ای خاک، تخلخل کل و شاخص پایداری ساختمان خاک داشته و این ویژگی‌ها به عنوان مهمترین ویژگی‌های موثر برای ارزیابی تاثیر تغییر کاربری بر کیفیت فیزیکی خاک منطقه مورد مطالعه شناسایی شدند. با تغییر کاربری اراضی از مرتع به کشاورزی، مقدار کربن آلی کاهش، ساختمان خاک تضعیف و مقدار تخلخل کل و درشت خاک، ظرفیت تهویه‌ای و شرایط ذخیره رطوبتی خاک و اندازه خاکدانه‌ها کاهش یافته است.
نتیجه‌گیری: نتایج این پژوهش نشان داد که تغییر کاربری مرتع به کشاورزی تاثیر نامطلوبی بر روی ویژگی‌های ساختمانی خاک داشته و باعث کاهش کیفیت فیزیکی خاک منطقه مورد مطالعه شده است. تخریب شرایط فیزیکی خاک در اثر تغییر کاربری در مدت زمان کوتاهی از تغییر کاربری (کشت کمتر از 10سال) شدیدتر بود و ادامه عملیات کشاورزی (کشت بیش از 30 سال) در بلند مدت باعث بهبود نسبی کیفیت خاک در مناطق نیمه خشک می‌شود. استفاده از روش‌های مدیریتی مناسب در زیست‌بوم‌های کشاورزی می‌تواند در بلند‌مدت شدت تخریب خاک در اثر تغییر کاربری به کشاورزی را کاهش دهد. همچنین ارزیابی کیفیت فیزیکی خاک می‌تواند ابزار مناسبی جهت بررسی سریع تاثیر تغییر عملیات مدیریتی بر شرایط خاک مناطق نیمه خشک فراهم کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating the Impact of Converting Rangeland to Cropland on Soil Physical Quality in a Semi-Arid Region

نویسندگان [English]

  • Amir Hossein Masoumi Tabar Zanjani 1
  • Mohammad sadegh Askari 2
  • Setareh Amanifar 3
  • Akbar Hassani 2
1 Master's degree in Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
2 Associate Professor, Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
3 Associate Professor, Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

Background and Objective: The conversion of rangeland to agricultural land is a significant challenge in sustainable natural resource management, affecting soil productivity and physical quality. Many soil functions are closely related to soil physical quality, so accurately assessing and improving soil physical conditions is crucial for maintaining ecosystem functions in both rangeland and agricultural areas. This study aimed to evaluate the impact of rangeland conversion to agriculture on soil physical quality and identify the most influential physical soil properties affected by this land-use change in semi-arid areas of Zanjan province.
Materials and Methods: This research was conducted in three adjacent areas with different land-use histories, including rangeland areas, areas converted from rangeland to dryland farming less than 10 years ago, and areas converted over 30 years ago. Soil sampling was done from fifteen sites at two depths: 0-15 and 15-30 cm. Disturbed and undisturbed soil samples were collected from each depth, and various soil properties were measured using standard laboratory methods. Discriminant analysis was employed to identify the most important soil properties affected by land-use change.
Results: Land-use change significantly impacted total soil porosity, macroporosity, soil aeration capacity, soil hydraulic conductivity, structural stability index, soil compaction degree, organic carbon content, electrical conductivity, soil sodium content, and acid and hot water-extractable carbohydrates. A high correlation (r>0.6) was observed between total soil porosity, macroporosity, soil aeration capacity, soil structural index, and soil organic matter content. Acid and hot water-extractable carbohydrates significantly correlated with soil structural quality indicators, including structural stability index, soil porosity characteristics, and soil aggregation. Discriminant analysis results indicated that land-use change had the greatest impact on acid and hot water-extractable carbohydrates, soil aeration capacity, total porosity, and structural stability index. These properties were identified as the most important indicators for assessing the impact of land-use change on soil physical quality in the study area. Conversion from rangeland to agriculture reduced organic carbon content, degraded soil structure, decreased total and macroporosity, soil aeration capacity, and moisture retention and aggregation conditions.
Conclusion: The findings of this study indicated that the conversion of rangeland to agriculture adversely affected soil structural properties and reduced soil physical quality in the study area. Soil physical condition degradation due to land-use change was more severe in the short term (less than 10 years of cultivation), while long-term cultivation (more than 30 years) led to relative soil quality improvement in semi-arid areas. Implementing appropriate management practices in agricultural ecosystems can reduce soil degradation intensity due to land-use change in the long term. Additionally, assessing soil physical quality can provide a suitable tool for rapidly evaluating the impact of management practices on soil conditions in semi-arid areas.

کلیدواژه‌ها [English]

  • Soil quality
  • soil structure
  • discriminant analysis
  • sustainable soil management
  • multivariate analysis
1.Karlen, D. L., Mausbach, M., Doran,
J. W., Cline, R., Harris, R., & Schuman, G. (1997). Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of America Journal, 61(1), 4-10. https://doi. org/10.2136/sssaj1997.03615995006100010001x.
2.Delelegn, Y. T., Purahong, W., Blazevic, A., Yitaferu, B., Wubet, T., Göransson, H., & Godbold, D. L. (2017). Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia. Scientific Reports, 7(1), 13602. https:// doi.org/ 10.1038/ s41598-017-14128-y.
3.Zhang, W., Li, X., Huang, W., Li, J., Ren, W., & Gao, Z. (2010). Comprehensive assessment methodology of soil quality under different land use conditions. Transactions of the Chinese Society of Agricultural Engineering, 26(12), 311-318. https://doi.org/10.3969/j.issn.1002.6819.2010.12.053.
4.Dong-wei, G., Gui-jin, M., Jia-qiang, L., Fan-jiang, Z., & Hui, W. (2009). Assessment of farmland soil quality under different utilization intensity in arid area. Yingyong Shengtai Xuebao, 2(4).
 
5.Xia, J., Ren, J., Zhang, S., Wang, Y., & Fang, Y. (2019). Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China. Geoderma, 349, 25-35. https://doi.org/ https://doi.org/10.1016/j.geoderma.2019. 04.032.
6.Wang, Q., Zhang, L., Li, L., Bai, Y., Cao, J., & Han, X. (2009). Changes in carbon and nitrogen of Chernozem soil along a cultivation chronosequence in a semi‐arid grassland. European Journal of Soil Science, 60(6), 916-923. https://doi.org/ 10.1111/j.13652389.2009.01174.x.
7.Lal, R., & Stewart, B. A. (2013). Principles of sustainable soil management in agroecosystems. CRC Press.
8.Yao, Y., Fu, B., Liu, Y., Li, Y., Wang, S., Zhan, T., Wang, Y., & Gao, D. (2022). Evaluation of ecosystem resilience to drought based on drought intensity and recovery time. Agricultural and Forest Meteorology, 314, 108809. https://doi. org/10.1016/j.agrformet.2022.108809
9.Fu, Z., Li, D., Hararuk, O., Schwalm, C., Luo, Y., Yan, L., & Niu, S. (2017). Recovery time and state change of terrestrial carbon cycle after disturbance. Environmental Research Letters,
12(10), 104004. https://doi.org/10.1088/ 1748-9326/aa8a5c.
10.Gao, J., Wang, Y., Zou, C., Xu, D., Lin, N., Wang, L., & Zhang, K. (2020). China’s ecological conservation redline: A solution for future nature conservation. Ambio, 49, 1519-1529. https://doi.org/ 10.1007/ s13280-019-01307-6.
11.Mele, P., Yunusa, I., Kingston, K., & Rab, M. (2003). Response of soil fertility indices to a short phase of Australian woody species, continuous annual crop rotations or a permanent pasture. Soil and Tillage Research, 72(1), 21-30. https://doi.org/https://doi. org/10.1016/S0167-1987(03)00063-1.
12.Pérez-Suárez, M., Castellano, M. J., Kolka, R., Asbjornsen, H., & Helmers, M. (2014). Nitrogen and carbon dynamics in prairie vegetation strips across topographical gradients in mixed Central Iowa agroecosystems. Agriculture, ecosystems & environment, 188, 1-11. https://doi.org/https://doi.org/10.1016/j.agee.2014.01.023.
13.Gomes, L., Simões, S. J., Dalla Nora,
E. L., de Sousa-Neto, E. R., Forti, M. C., & Ometto, J. P. H. (2019). Agricultural expansion in the Brazilian Cerrado: Increased soil and nutrient losses and decreased agricultural productivity. Land, 8(1), 12. https://doi.org/https:// doi.org/10.3390/land8010012.
14.Dionizio, E. A., & Costa, M. H. (2019). Influence of land use and land cover on hydraulic and physical soil properties at the cerrado agricultural frontier. Agriculture, 9(1), 24. https://doi.org/ https:// doi.org/ 10.3390/ agriculture 9010024.
15.Campos, R., Pires, G. F., & Costa, M. H. (2020). Soil carbon sequestration in rainfed and irrigated production systems in a new Brazilian agricultural frontier. Agriculture, 10(5), 156. https://doi.org/ https://doi.org/10.3390/agriculture10050156.
16.Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H. J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122-137.  https:// doi. org/https://doi.org/10.1016/j.geoderma. 2017.11.009.
17.Li, X. G., Li, F. M., Zed, R., & Zhan,
Z. Y. (2007). Soil physical properties and their relations to organic carbon pools as affected by land use in
an alpine pastureland. Geoderma,
139(1-2), 98-105. https://doi.org/ https:// doi.org/10.1016/j.geoderma.2007.01.006.
18.Wu, R., & Tiessen, H. (2002).
Effect of land use on soil degradation
in alpine grassland soil, China.
Soil Science Society of America Journal
, 6(5) 1655-1648, https://doi.org/ https:// doi.org/10.2136/sssaj2002.1648.
19.Wakindiki, I., Mainuri, Z. G., & Gichaba, M. (2006). Soil Use and Management Effects on Aggregate Stability and Hydraulic Conductivity Within River Njoro Watershed in Kenya. 18th World Congress of Soil Science: Philadelphia, PA.
20.Celik, I. (2005). Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil and Tillage Research, 83(2), 270-277. https:// doi.org/10.1016/j.still.2004.08.001.
21.Sonneveld, M., Backx, M., & Bouma, J. (2003). Simulation of soil water regimes including pedotransfer functions and land-use related preferential flow. Geoderma, 112(1-2), 97-110. https:// doi.org/10.1016/S0016-7061(02)00298-7.
22.Yang, Z., Miao, P., Zheng, Y., & Guo, J. (2023). Impacts of Grazing on Vegetation and Soil Physicochemical Properties in Northern Yinshan Mountain Grasslands. Sustainability, 15(22), 16028. https://doi.org/10. 3390/ su152216028.
23.Raiesi, F., & Salek‐Gilani, S. (2020). Development of a soil quality index for characterizing effects of land‐use changes on degradation and ecological restoration of rangeland soils in a
semi‐arid ecosystem. Land Degradation & Development, 31(12), 1533-1544. https://doi.org/10.1002/ldr.3553.
24.Zornoza, R., Mataix-Solera, J., Guerrero, C., Arcenegui, V., García-Orenes, F., Mataix-Beneyto, J., & Morugán, A. (2007). Evaluation of soil quality using multiple lineal regression based on physical, chemical and biochemical properties. Science of the Total Environment, 378(1-2), 233-237. https://doi.org/10.1016/j.scitotenv.2007.01.052.
25.Shukla, M., Lal, R., & Ebinger, M. (2006). Determining soil quality indicators by factor analysis. Soil
and Tillage Research
, 87(2), 194-204. https://doi.org/https://doi.org/10.1016/j.still.2005.03.011.
26.Nosrati, K. (2013). Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques. Environmental monitoring and assessment, 185, 2895-2907. https:// doi.org/ 10.1007/ s10661-012-2758-y.
27.Governorate, Z. P. (2014). Report of
the Strategic Development Plan of Agricultural and Watershed of Zanjan Province Based on the Meetings of Agricultural and Water Governance Room. Planning and Budget Office, 11p. Planning and Budget Office. [In Persian]
28.Khasi, Z., Askari, M. S., Amanifar, S., & Moravej, K. (2024). Assessing soil structural quality as an indicator of productivity under semi-arid climate. Soil and Tillage Research, 236, 105945. https:// doi.org/ 10.1016/ j.still.2023. 105945.
29.Gee, G. W., & Bauder, J. W. (1986). Particle‐size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 383-411. https://doi.org/10.2136/sssabookser5. 1.2ed.c15.
30.Klute, A. (1965). Laboratory measurement of hydraulic conductivity of saturated soil. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, 9, 210-221. https://doi.org/ 10.2134/agronmonogr9.1.c13.
31.Gee, G. W., Bauder, J., & Klute, A. (1986). Methods of soil analysis, part 1, physical and mineralogical methods. Soil Science Society of America, American Society of Agronomy, 5. https://doi.org/10.2136/sssabookser5.1. 2ed.c17.
32.Klute, A. (1986). Water retention: laboratory methods. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 635-662. https://doi.org/10.2136/sssabookser5. 1.2ed.c26.
33.Reichert, J. M., Brandt, A. A., Rodrigues, M. F., da Veiga, M., & Reinert, D. J. (2017). Is chiseling or inverting tillage required to improve mechanical and hydraulic properties of sandy clay loam soil under long-term no-tillage? Geoderma, 301, 72-79. https:// doi.org/ 10.1016/ j.geoderma. 2017.04.012.
34.Wienhold, B., Karlen, D., Andrews, S., & Stott, D. (2009). Protocol for Soil Management Assessment Framework (SMAF) soil indicator scoring curve development. Renew Agric Food Syst, 24, 260-266.
35.Dexter, A., Czyż, E., Richard, G., & Reszkowska, A. (2008). A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma, 143(3-4), 243-253. https:// doi.org/ 10.1016/ j.geoderma. 2007.11.010.
36.White, R. E. (2005). Principles and practice of soil science: the soil as a natural resource. John Wiley & Sons.
37.Pieri, C. J. (2012). Fertility of soils: a future for farming in the West African Savannah (Vol. 10). Springer Science & Business Media.
38.Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R., & Håkansson, I. (2009). Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research, 102(2), 242-254. https:// doi.org/10.1016/j.still.2008.07.002.
39.Nelson, D. W., & Sommers, L. E. (1983). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539-579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29.
40.Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of analysis. CRC press. https://doi.org/ 10.1201/9781420005271.
41.Helmke, P. A., & Sparks, D. L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of soil analysis: Part 3 chemical methods, 5, 551-574. https://doi.org/10.2136/sssabookser5. 3.c19.
42.DuBois, M., Gilles, K. A., Hamilton,
J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017.
43.Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. Journal of machine learning research, 8(5).
44.Huberty, C. J., & Olejnik, S. (2006). Applied MANOVA and discriminant analysis. John Wiley & Sons. https:// doi.org/DOI:10.1002/047178947X.
45.Tirgarsoltani, M. T., Gorji, M., Mohammadi, M. H., & Millan, H. (2014). Evaluation of models for description of wet aggregate size distribution from soils of different land uses. Soil science and plant nutrition, 60(2), 123-133. https://doi.org/10. 1080/00380768.2013.878642.
46.Obalum, S., Watanabe, Y., Igwe, C., Obi, M., & Wakatsuki, T. (2012). Carbon stock in the solum of some coarse-textured soils under secondary forest, grassland fallow, and bare footpath in the derived savanna of
south-eastern Nigeria. Soil Research, 50(2), 157-166. https://doi.org/10. 1071/ SR11096.
 
47.Campbell, C., Selles, F., Lafond, G., & Zentner, R. (2001). Adopting zero tillage management: Impact on soil C and N under long-term crop rotations in a thin Black Chernozem. Canadian Journal of Soil Science, 81(2), 139-148. https://doi.org/10.4141/S00-035.
48.Li, X. G., Wang, Z. F., Ma, Q. F., & Li, F. M. (2007). Crop cultivation and intensive grazing affect organic C pools and aggregate stability in arid
grassland soil. Soil and Tillage Research, 95(1-2), 172-181. https:// doi.org/10.1016/j.still.2006.12.005.
49.Branch, K. (2012). Land use Change Effects on Carbohydrate Fractions, Total and Particulate Organic Matter of Forest Soils in Central Zagros Mountains" Jaber Fallahzade and “Mohammad Ali Hajabbasi" Department of Soil Science, College of Agriculture, Islamic Azad University. Journal of Applied Sciences, 12(4), 387-392. https:// doi.org/ 10. 3923/jas.2012.387.392.
50.Bodhinayake, W., & Cheng Si, B. (2004). Near‐saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada. Hydrological processes, 18(15), 2835-2850. https:// doi.org/ https:// doi.org/ 10.1002/ hyp. 1497.
51.Zolfaghari, A., & Hajabbasi, M. (2008). The effects of land use change on physical properties and water repellency of soils in Lordegan forest and Freidunshar pasture. Water and Soil, 22(2). https://doi.org/10.22067/ JSW. V0I22.1021.
52.Dörner, J., Dec, D., Peng, X., & Horn, R. (2010). Effect of land use change on the dynamic behaviour of structural properties of an Andisol in southern Chile under saturated and unsaturated hydraulic conditions. Geoderma,
159(1-2), 189-197. https://doi.org/10. 1016/j.geoderma.2010.07.011.
53.Bolan, N., Hedley, M., & White, R. (1991). Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant and soil, 134, 53-63. https://doi.org/10. 1007/BF00010717.
54.Kabir, E. B., Bashari, H., Bassiri, M., & Mosaddeghi, M. R. (2020). Effects of land-use/cover change on soil hydraulic properties and pore characteristics in a semi-arid region of central Iran. Soil and Tillage Research, 197, 104478. https:// doi.org/10.1016/j.still.2019.104478.
55.Yang, Y., Wu, J., Zhao, S., Mao, Y., Zhang, J., Pan, X., He, F., & van der Ploeg, M. (2021). Impact of long‐term sub‐soiling tillage on soil porosity
and soil physical properties in the
soil profile. Land Degradation & Development, 32(10), 2892-2905. https:// doi.org/10.1002/ldr.3874.
56.Ajami, M. (2007). Soil quality attributes micropedology and clay mineralogy as affected by land use change and geomorphic position on some loess-derived soils in eastern Golestan Province, Agh-Su watershed. Gorgan University of Agricultural Sciences and Natural Resources. 191p. [In Persian]
57.Kelishadi, H., Mosaddeghi, M., Hajabbasi, M., & Ayoubi, S. (2014). Near-saturated soil hydraulic properties as influenced by land use management systems in Koohrang region of central Zagros, Iran. Geoderma, 213, 426-434. https:// doi.org/ 10.1016/ j.geoderma. 2013.08.008 .
58.Gholami Leila, D. M., Nabi Elahi, K., & Junidi Jafari, H. (2016). The effect of land use change on some physical and chemical characteristics of soil (case study: Baneh) Journal of Water and Soil Resources Conservation, 5(3), 13-27. https:// sid.ir/ paper/ 232115/ en.
[In Persian]
59.Soares, W. A., Silva, S. R. d., & Lima,
J. R. d. S. (2020). Land-use change effect on the hydro-dynamic characteristics of soil in the Brazilian semi-arid region. Revista Ambiente & Água, 15(2), e2368. https:// doi.org/ 10.4136/ ambi-agua. 2368.
 
60.Zhang, X., Neal, A. L., Crawford, J. W., Bacq-Labreuil, A., Akkari, E., & Rickard, W. (2021). The effects of long-term fertilizations on soil hydraulic properties vary with scales. Journal of Hydrology, 593, 125890. https:// doi. org/10.1016/j.jhydrol.2020.125890.
61.Robbins, C. W. (1984). Sodium adsorption ratio-exchangeable sodium percentage relationships in a high potassium saline-sodic soil. Irrigation Science, 5, 173-179. https://doi.org/10. 1007/BF00264606.
62.Mukhopadhyay, S., Masto, R., Yadav, A., George, J., Ram, L., & Shukla, S. (2016). Soil quality index for evaluation of reclaimed coal mine spoil. Science of the Total Environment, 542, 540-550. https:// doi.org/ 10.1016/ j.scitotenv. 2015.10.035.
63.Jabro, J. D., Iversen, W. M., Stevens,
W. B., Evans, R. G., Mikha, M. M., & Allen, B. L. (2016). Physical and hydraulic properties of a sandy loam soil under zero, shallow and deep tillage practices. Soil and Tillage Research, 159, 67-72. https://doi.org/10.1016/ j.still.2016.02.002.
64.Shaheb, M. R., Venkatesh, R., & Shearer, S. A. (2021). A review on the effect of soil compaction and its management for sustainable crop production. Journal of Biosystems Engineering, 1-23. https://doi.org/ https:// doi.org/ 10.1007/ s42853-021-00117-7.
65.Amézketa, E. (1999). Soil aggregate stability: a review. Journal of sustainable agriculture, 14(2-3), 83-151. https://doi.org/10.1300/J064v14n02_08.
66.Zhu, G. Y., Shangguan, Z. P., & Deng, L. (2021). Variations in soil aggregate stability due to land use changes from agricultural land on the Loess Plateau, China. Catena, 200, 105181. https://doi. org/10.1016/j.catena.2021.105181.
67.Sarker, J. R., Singh, B. P., Cowie, A. L., Fang, Y., Collins, D., Badgery, W.,
& Dalal, R. C. (2018). Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils. Soil and Tillage Research, 178, 209-223. https://doi.org/10.1016/j.still.2017.12. 019.
68.Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons.
69.Zaher, H., Caron, J., & Ouaki, B. (2005). Modeling aggregate internal pressure evolution following immersion to quantify mechanisms of structural stability. Soil Science Society of America Journal, 69(1), 1-12. https://doi.org/ 10.2136/sssaj2005.0001.
70.Celik, I., Gunal, H., Budak, M., & Akpinar, C. (2010). Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma, 160(2), 236-243. https://doi. org/10.1016/j.geoderma.2010.09.028.
71.Grandy, A. S., Fraterrigo, J. M., & Billings, S. A. (2012). Soil ecosystem resilience and recovery. Soil ecology and ecosystem services, 357-376.
72.Hirsch, P. R., Jhurreea, D., Williams,
J. K., Murray, P. J., Scott, T., Misselbrook, T. H., Goulding, K. W., & Clark, I. M. (2017). Soil resilience and recovery: rapid community responses to management changes. Plant and soil, 412, 283-297. https://doi.org/10.1007/ s11104-016-3068-x.
73.Czyż, E. A. (2004). Effects of traffic on soil aeration, bulk density and growth of spring barley. Soil and Tillage Research, 79(2), 153-166. https://doi.org/10. 1016/j.still.2004.07.004.
74.Liu, Y., Li, C., Cai, G., Sauheitl, L., Xiao, M., Shibistova, O., Ge, T., & Guggenberger, G. (2023). Meta-analysis on the effects of types and levels of
N, P and K fertilization on organic carbon in cropland soils. Geoderma, 437, 116580. https://doi.org/ 10.1016/ j.geoderma.2023.116580.
75.Liu, Q., Xu, H., Mu, X., Zhao, G.,
Gao, P., & Sun, W. (2020). Effects of different fertilization regimes on crop yield and soil water use efficiency of millet and soybean. Sustainability, 12(10), 4125. https://doi.org/ 10.3390/ su12104125.
76.Gholami, L., Davari, M., Nabiollahi, K., & Joneidi Jafari, H. (2016). Effect of land use changes on some soil physical and chemical properties (Case study: Baneh). Journal of Water and Soil Resources Conservation, 5(3), 13-27.
[In Persian]