اثر فرآورده‌های آلی حاصل از تفاله زیتون بر فراهمی فسفر و عملکرد میوه زیتون (Arbequina)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری ، گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 دانشیار، گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 استادیار، گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

4 دانشیار، گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

5 استاد ، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران.

چکیده

سابقه و هدف: میوه و روغن زیتون به علت دارا بودن خواص عالی و آنتی‌اکسیدانی از ارزش تغذیه‌ای بسیار بالایی برخوردار است. پسماند حاصل از روغن‌کشی میوه زیتون حاوی موادآلی و عناصر معدنی خصوصا فسفر بوده که می‌تواند به عنوان منبع غنی کود‌آلی در کشاورزی مورد استفاده قرار گیرد. بنابراین، هدف از اجرای این پژوهش، مصرف دوباره پسماند حاصل از روغن‌کشی میوه زیتون و کاربرد آن به عنوان کود آلی در باغات در جهت بهبود وضعیت تغذیه‌ای درختان و عملکرد میوه زیتون می‌باشد.
مواد و روش‌ها: ابتدا فرآورده‌های مختلف نظیر کمپوست، ورمی‌کمپوست و زغال زیستی از تفاله جامد زیتون تولید شدند. سپس بخشی از کمپوست و ورمی‌کمپوست با سنگ فسفات به میزان 1% وزنی به همراه زادمایه باکتری‌های حل کننده فسفر (باسیلوس مگاتریوم) و تثبیت کننده نیتروژن (ازتوباکتر کروکوکوم)؛ گوگرد به میزان 1% وزنی به همراه جدایه‌های تیوباسیلوس (تیوباسیلوس تیوپاروس) به صورت بیولوژیکی و بخشی دیگر از کمپوست و ورمی‌کمپوست نیز با اختلاط کودهای نیتروژنی، فسفری و گوگردی به میزان 1 درصد وزنی به ترتیب از منابع اوره، سوپرفسفات تریپل و گوگرد عنصری به صورت شیمیایی غنی‌سازی شدند. زغال‌زیستی با نیتروژن، فسفر و پتاسیم (NPK) به روش داغ غنی‌سازی شد. تیمارها در بخش سایه‌انداز درختان زیتون به روش چالکود اعمال گردید. مقدار مصرف تفاله جامد زیتون و فرآورده‌های تولیدی از آن 3 درصد وزنی و مقادیر NPK از منبع اوره، سوپرفسفات تریپل و سولفات پتاسیم و همچنین عناصر کم مصرف براساس نتیجه آزمایش خاک بود. آزمایش در قالب طرح بلوک‌های کامل تصادفی بر روی رقم آربکین در سه تکرار با 12 تیمار که شامل تفاله جامد زیتون، کمپوست غنی نشده، کمپوست غنی شده شیمیایی، کمپوست غنی شده بیولوژیکی، ورمی‌کمپوست غنی نشده، ورمی‌کمپوست غنی شده شیمیایی، ورمی‌کمپوست غنی شده بیولوژیکی، زغال زیستی غنی نشده، زغال زیستی غنی شده شیمیایی، NPK (750 گرم اوره، 250 گرم سوپر فسفات تریپل، 750 گرم سولفات پتاسیم)، شاهد مثبت ( 10 کیلوگرم کودگاوی)، شاهد (بدون کود گاوی) بودند و در مجموع 36 نمونه در باغ مادری زیتون علی‌آباد شهرستان رودبار استان گیلان اجرا شد. در نهایت برخی ویژگی‌های خاک، فسفر برگ و عملکرد زیتون اندازه‌گیری شدند.
یافته‌ها: نتایج این پژوهش نشان داد که اثر تیمارها بر فسفر قابل جذب خاک، فسفر برگ و عملکرد زیتون در سطح احتمال یک درصد معنی‌دار شد. حداکثر مقدار فسفر قابل جذب خاک متعلق به زغال زیستی غنی نشده 43/17 میلی‌گرم بر کیلوگرم بود و نسبت به شاهد 43/272 درصد افزایش داشت. بالاترین مقدار فسفر برگ و عملکرد میوه زیتون متعلق به تیمار ورمی‌کمپوست بیولوژیک بود که به ترتیب 33/0 درصد و 33/50 کیلوگرم به ازای هر درخت بود. با کاربرد ورمی‌کمپوست بیولوژیک، عملکرد زیتون 58/93 درصد نسبت به شاهد افزایش داشت.
نتیجه‌گیری: با توجه به نتایج، کاربرد 9 کیلوگرم زغال زیستی سبب افزایش غلظت فسفر قابل جذب خاک شد. همچنین بالاترین مقدار فسفر برگ و عملکرد میوه زیتون در خاک‌های دارای ورمی‌کمپوست تلقیح شده با باکتری به ‌دست آمد. به نظر می‌رسد درختان زیتونی که با ورمی‌کمپوست حاصل از تفاله جامد زیتون غنی شده با باکتری تغذیه شده‌اند، از نظر اسیدیته، قابلیت هدایت الکتریکی، فسفر برگ و عملکرد میوه زیتون رضایت بخش بوده‌اند. بنابراین، می‌توان از باکتری‌های محرک رشد گیاه در غنی‌سازی کمپوست و ورمی‌کمپوست برای بهبود کیفیت خاک و عملکرد زیتون خاک‌های آهکی بهره برد. ضمنا، ورمی‌کمپوست بیولوژیک به عنوان تیمار برتر شناخته شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of organic products of olive mill on phosphorous availability and olive fruit yield (Arbequina)

نویسندگان [English]

  • Seyedeh hamideh Mousavi dizkouhi 1
  • Esmaeil Dordipour 2
  • Mojtaba BaraniMotlagh 2
  • Elham Malekzadeh 3
  • Fardin Sadegh-Zadeh 4
  • , Mahmoud Ghasem Nejhad 5
1 Corresponding Author, Ph.D. Student, Dept. of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Associate Prof., Dept. of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Assistant Prof., Dept. of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 Associate Prof., Dept. of Soil Science and Engineering, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran
5 Professor, Dept. of Horticulture Science, Faculty of Agriculture Sciences, University of Guilan, Rasht, Iran.
چکیده [English]

Background and objectives: Fruit and Olive oil due to having excellent and antioxidant properties have top nutrition value. Residue from oil extraction of olive fruit contains organic matters and mineral elements especially phosphorus that it can be used as rich source of organic fertilizer in agriculture. Therefore, the goal of implementation this research was Reusing the waste obtained from oil extraction of olive fruit and its use as organic fertilizer in groves to improve nutrition condition of trees and olive fruit yield.
Materials and methods: At first, different products like Compost, Vermicompost and Biochar were produced from olive solid waste. Then, part of Compost and Vermicompost were inoculated with Phosphate rock amount of 1% weight along with Phosphorous dissolving bacteria (Bacillus megaterium) and Nitrogen stabilizer (Azetobacter crococcum); Sulfur amount of 1% weight along with Thiobacillous (Thiobacillus thioparous) biologically and another part of Compost and Vermicompost were inoculated by mixing nitrogen, phosphorus and sulfur fertilizers amount of 1% weight from the sources urea, triple super phosphate and elemental sulfur chemically, respectively. Biochar was inoculated with nitrogen, phosphorus and potassium (NPK) in a hot way. Treatments were applied in the shady section of the Olive trees inside of the holes by the Chalkod method. The amount of use olive solid waste and its products were 3% weight and amount of NPK from sorce urea, tripl superphosphate and potassium sulphat and micro elements were according to result of soil examination. The experiment was carried out in a randomized complete block design on Arbequina in three replications with 12 treatments which includes solid olive mill (Om)- non-enriched Compost (C)- chemically enriched Compost (CC)- biologically enriched Compost (CB)- non-enriched Vermicompost (V)- chemically enriched Vermicompost (VC)- Biologically enriched Vermicompost (VB)- Unenriched Biochar (B)- Chemically enriched Biochar (BC)- NPK (750 grams of urea, 250 grams of triple superphosphate, 750 grams of potassium sulfate), -Manure (with 10 kg of cow manure)- Control (without cow manure) and a total of 36 samples were performed in Aliabad Olive Garden, Rudbar City, Guilan Province. Finally, some soil characteristics, leaf phosphorus and olive yield were measured.
Results: The results of this research showed that, effect of treatments on soil available phosphorus, leaf phosphorus and olive yield was significant at 1%. Maximum of soil available phosphorus was belong to non inoculated Biochar 17.43 miligram per kilogram and it has an increase compared to control aboute 272/43 %. The highest amount of leaf phosphorus and fruit yield was belong to biological vermicompost treatment that it was 0.33% and 50.33 kilogram for per tree, respectively. Using biological vermicompost, olive yield had an increase 93.58 % compared to control.
Conclusion: According to the results, the use of 9 kg of biochar increased the concentration of absorbable phosphorus in the soil. Also, the highest amount of leaf phosphorus and olive fruit yield were obtained in soils with vermicompost inoculated with bacteria. It seems that olive trees fed with vermicompost obtained from solid olive pomace enriched with bacteria were satisfactory in terms of acidity, electrical conductivity, leaf phosphorus and olive fruit yield. Therefore, plant growth stimulating bacteria can be used in compost and vermicompost enrichment to improve soil quality and olive yield in calcareous soils. Meanwhile, biological vermicompost was recognized as the superior treatment.

کلیدواژه‌ها [English]

  • Olive waste
  • Boichar
  • Available phosphor
  • Compost
  • Vermicompost
1.Seifi, E., Jalali, A., Ebrahimnia, S., & Freydoni, H. (2016). Comparison of the biochemical composition of three varieties of olive oil (Olea europaea L.) in different regions of Golestan province. Plant Environmental Physiology, 11 (43), 52-65. [In Persian]
2.Seyedi Marghaki, A., Ghasemnezhad, M., & Hamidoghli, Y. (2017). The effect of solid waste compost of olive oil extraction factory on the percentage and quality of olive oil of yellow and oil varieties in Manjil region. Horticultural Sciences of Iran, 48 (3), 645-653.
doi: 10.22059/ijhs.2017.203028.976
[In Persian]
3.Seyedi Marghaki, A., Hamidoghli, Y., Ghasemnezhad, M., & Ghorbanzadeh, N. (2018). The effect of olive oil factory effluent on soil biological characteristics, oil percentage and quality, and fruit yield of two olive cultivars. Horticultural Sciences of Iran. 49 (2). 365-374. doi: 10.22059/ijhs.2017.223862.1157.[In Persian]
4.Hashempour, E., Farhangi Rasti, M. B., Ghorbanzadeh, N., & Fazeli Sangani, M. (2018). The study of phosphorus release from olive solid residue by Bacillus bacteria in soil. Department of Soil Science, 77p. doi: 10.22067/jsw.v34i1. 80353. [In Persian]
5.Li, L., Deng, Y., LI, Z., Zhang, Z., Gao, X., Geng, X., & Zhang, D. (2020). Resourcing potential of olive oil pomace. Thermal Science, 24 (3), 1761-1768. doi.org/10.2298/TSCI190603049L.
6.López-Piñeiro, A., Albarrán, A., Rato Nunes, J.M., & Barreto, C. (2008). Short and medium-term effects of two-phase olive mill waste application on olive grove production and soil properties under semiarid mediterranean conditions. Bioresource Technology, 99, 7982-7987. doi:10.1016/j.biortech.2008.03.051.
7.Ahmad, R., Jilani, Gh., Arshad, M., Zahir, Z. A., & Khalid, A. (2007). Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Annals of Microbiology, 57 (4), 471-479. doi: 10.1007/BF03175343.
8.Michailides, M., Christou, G., Akratos, C. S., Tekerlekopoulou, A. G., & Vayenas, D. V. (2011). Composting of olive leaves and pomace from a three-phase olive mill plant. International Biodeterioration & Biodegradation, 65, 560-564. doi: 10.1016/j.ibiod.2011. 02.007.
9.Fouguira, S., El Haji, M., Benhra, J., & Ammar, E. (2023). Optimization of olive oil extraction wastes co-composting procedure based on bioprocessing parameters. Heliyon, 9, 1-13. doi.org/ 10.1016/j.heliyon.2023.e19645.
10.Aliyar, Sh., Aliasgharzad, N., Dabbagh Mohhamadi nasab, A., & Ostan, Sh. (2021). The effect of vermicompost application on the growth and water relations of quinoa plant under salinity stress conditions. Scientific Research Journal of Agricultural Knowledge and Sustainable Production, 31 (3), 131-147. [In Persian]
11.Ghasemi Tabasi, H., Darzi, M. T., & Haj seyed hadi, M. R. (2023). The effect of integrated management of organic and biological fertilizers on the quantity and quality of coriander essential oil (Coriandrum sativum L.). Agricultural knowledge and sustainable production, 23 (2), 35-48. doi: 10.22034/saps.2022. 49834.2803. [In Persian]
12.Kodaolu, B., Mohammed, I., Gillespie, A. W., Audette, Y., & Longstaffe, J. G. (2023). Phosphorus availability and corn (Zea mays L.) response to application of P-based commercial organic fertilizers to a calcareous soil. Soil Science Society of America, 1-12. doi: 10.1002/saj2. 20587.
13.Daverkosen, L., Holzknecht, A., Friedel, J. K., Keller, T., Strobel, B. W., Wendeberg, A., & Jordan, S. (2022). The potential of regenerative agriculture to improve soil health on Gotland, Sweden. Journal of Plant Nutrition and Soil Science, 185, 901-914. doi: 10.1002/jpln.202200200.
14.Brichi, L., Fernandes, J. V. M., Silva, B. M., Vizú, J. de F., Junior, J. N. G., & Cherubin, M. R. (2023). Organic residues and their impact on soil health, crop production and sustainable agriculture: A review including bibliographic analysis. Soil use and management, 39 (2), 686-706. doi.org/10.1111/sum.12892.
15.Hashempour, A., Fotohi Ghazvini, R., Bakhshi, D., & Asadi Sanam, S. (2010). The effect of Kazaron climate on quality indicators of olive oil of yellow, oil and Mari cultivars (Olea europaea L.). Horticultural Sciences of Iran, 41 (1), 47-53. [In Persian]
16.Hachicha, R., Rigane, H., Ben Khodher, M., Nasri, M., & Medhioub, K. (2003). Effects of partial stone removal on the co‐composting of olive‐oil processing solid residues with poultry manure and the quality of compost. Environmental Technology, 24 (1), 59-67. doi.org/10. 1080/09593330309385536.
17.Khosravi, A., Zarei, M., & RonaghI, A. M. (2017). Effect of Claroidoglomus atonicatum fungus, vermicompost and phosphate sources on root colonization and growth of lettuce. Soil Management and Sustainable Production, 7 (2), 167-181. http://ejsms.gau.ac.ir. [In Persian]
18.Fayazi, H., Ebdali Mashhadi, A. R., Kochakzadeh, A., Papzan, A. H., & Arzanesh, M. H. (2018). The effect of organic and biological fertilizers on the content of nitrogen, phosphorus and potassium, photosynthetic pigments
and the amount of the effective substance of the medicinal plant )Echinacea Purpurea L.). Agricultural Researches of Iran, 16 (2), 283-298.
oi:10.22067/gsc.v16i2.49182. [In Persian]
19.Khajehaghverdi, M., Ardakani, M. R., Abbaszadeh, B., & Nejatkhah Manavi, P. (2018). The effect of vermicompost, biochar and mycorrhizal symbiosis on some quantitative and qualitative characteristics of pumpkin (Cucurbita pepo L.). Researches on Medicinal and Aromatic Plants of Iran, 34 (1), 87-100. doi: 10.22092/ijmapr.2018.114886.2095. [In Persian]
20.Sparks, D. L. (1996). Methods of soil analysis Madison: SSSA, ASA Publishing Takahashi, F., Mizoguchi, T., Yoshida, R., Ichimura, Kand Shinozaki, KF2011 Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Molecular Cell. 41, 649-660.
21.Gong, X., Cai, L., Li, S., Chang, S. X., Sun, X., & An, ZH. (2018). Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost. Ecotoxicology and Environmental Safety, 156, 197-204. doi.org/10.1016/j.ecoenv.2018.03.023.
22.Toscano, P., Casacchia, T., Diacono, M., & Montemurro, F. (2013). Composted Olive Mill By-products: Compost Characterization and Application on Olive Orchards. Journal of Agriculture Science Technology, 15, 627-638.
23.Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.
24.Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-Total. P. 595-624. In: Page, A. L., et al (eds.). Methods of soil analysis. Part 2. 2nd ed. Agron. Momgr. 9. ASA an SSSA, Madison, WI.
25.Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA, Cire. 939, U. S. Gover. Prin. Office, Washington DC.
26.Jones, J. B. Jr., & Case, V. W. (1990). Sampling, Handling and analyzing plant tissue samples, in R.L. Westerman, E. d. Soil testing and Plant Analysis. 3 rd. ed. SSSA. Book Series Number 3. Soil science Society of America, Madison, WI. 389-427.
27.Knudsen, D., Peterson, G. A., & Pratt, P. F. (1982). Lithium, Sodium and potassium. In: A. L. Page et al. (Eds.), Methods of Soil Analysis. Part 2, American Society of Agronomy, Madison, WI. 225-246.
28.Mehlich, A. 1953. Rapid determination of cation and anion exchange properties and pH of soils. J. Ass. Agric. Chem.
36, 445-457.
29.Lindsay, W. L., & Norwell, W. A. (1978). Development of a DTPA micronutrient soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421-428.
30.Qiao, Y., Wu, J., Xu, Y., Fang, Z., Zheng, L., Cheng, W., Tsang, E. P., Fang, J., & Zhao, D., (2017). Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. Ecological Engineering, 106, 515-522.
31.Karunanithi, R., Sik, Ok., Dharmarajan, R., Ahmad, M., Seshadri, B., Bolan, N., & Naidu, R. (2017). Sorption, kinetics and thermodynamics of phosphate sorption onto soybean stover derived biochar. Environmental Technology & Innovation, 8, 113-125. doi.org/10. 1016/j.eti.2017.06.002.
32.Alikhani, H., & Hemmati, A. (2014). The effect of vermicompost enrichment with fertilizer and bacterial treatments on humicization and humic acid characteristics. Agricultural Knowledge and Sustainable Production, 24 (1), 13. [In Persian]
33.Pandit, N. R., Mulder, J., Hale, S. E., Schmidt, H. P., & Cornelissen, G. (2017). Biochar from "Kon Tiki" flame curtain and other kilns: Effects of nutrient enrichment and kiln type on crop yield and soil chemistry. Plos One, 12 (4), 18. doi.org/10.1371/journal. pone.0176378.
34.Rezaei Danesh, N., Rasouli Sedghiyani, M. H., Moradi, N., & Barin, M. (2021). Combined effect of compost, biochar and biological inoculation on enzyme activity and some soil microbial indicators, Soil Biology, 9 (2), 12-15.
35.Sarmasti, Kh., & Arshadi, F. (2022). The effect of biochar on chemical and biological properties in acid soil and soil organic carbon dynamics. Journal of Soil Productivity, 1 (1), 19. [In Persian]
36.Hassanpour, E., Shirvani, M., Hajabbasi, M. A., & Majidi, M. M. (2022). The effect of acidic biochars on some chemical characteristics and nutrient absorption capacity of calcareous soils. Water and Soil Sciences, 26 (2), 39-59. [In Persian]
37.Mousavi, R., Rasouli sedghiyani, M. H., Sepehr, A., & Barin, M. (2023). Effect of enriched biochar on phosphorus absorption behavior in saline and non-saline soils of Lake Urmia basin. Journal of Water and Soil Sciences,
27 (1), 230-270. [In Persian]
38.Ferasati, M., Shakeri, H., & Rahemi, A. (2020). Investigating the effect of olive leaf biochar on physical and chemical properties of silty loam soil. Environmental Studies, Natural Resources and Sustainable Development, 4 (1), 10. [In Persian]
39.Becagli, M., Santin, M., & Cardelli, R. (2022). Co-application of wood distillate and biochar improves soil quality and plant growth in basil (Ocimum basilicum L.). Journal of Plant Nutrition and Soil Science, 185, 120-131. doi: 10.1002/ jpln.202100239.
40.Gonzalez Sarango, E. M., Leimer, S., Valarezo Manosalvas, C., & Wilcke, W. (2022). Does biochar improve nutrient availability in Ultisols of tree plantations in the Ecuadorian Amazonia? Soil Science Society of America Journal,
86, 1072-1085. doi: 10.1002/saj2.20421.
41.Rasouli Sedghiani, M. H., Ebrahimi karimabad, R., & Vahedi, R. (2020). Investigating the effect of microorganisms that dissolve insoluble phosphates on the efficiency of phosphorus absorption and consumption of corn plants. Department of Soil Science, Faculty of Agriculture, Urmia University. Journal of Water and Soil Sciences, 24 (3), 11. [In Persian]
42.Busato, J. G., Ferrari, L. H., Chagas Junior, A. F., da Silva, D. B., dos Santos Pereira, T., & de Paula. A. M. (2020). Trichoderma strains accelerate maturation and increase available phosphorus
during vermicomposting enriched with rock phosphate. Journal of Applied Microbiology, 9p. doi:10.1111/jam. 14847.
43.Rouhi Kelarlo, T., & Khadem Moghadam Egdelo, N. (2022). The effect of using triple superphosphate, biofertilizer containing azotobacter and mycorrhizal fungi on the growth and nutrition of corn. Soil Fertility, 1(1), 16. [In Persian]
44.Zarei, M., & Khosravi, A. (2018). Effect of organic and inorganic additives on some chemical properties of vermicompost, earthworm’s biomass and reproduction. Iran Agricultural Research, 37 (2), 35-44. doi: 10.22099/ IAR.2018.5000.
45.Hue, S., Zhang, R., Zhang, C., Wang, L., Wang, H., & Wang, X. (2023). Role of vermicompost and biochar in soil quality improvement by promoting (Bupleurum falcatum L.) nutrient absorption. Soil use and management, 39 (4), 1600-1617. doi.org/10.1111/sum.12955.
46.Atoloye, I. A., Jacobson, A., Creech, E., & Reeve, J. (2021). Variable impact of compost on phosphorus dynamics in organic dryland soils following a one-time application. Soil Science Society of America Journal, 85 (4), 1122-1138. doi:10.1002/saj2.20275.
47.Rahman, M. d. S., Schefe, C., & Weatherley, A. (2023). The combined addition of citric and aromatic organic acids to an acid soil prolongs phosphorus availability. Soil Science Society of America, 87, 797-807. doi: 10.1002/saj2.20532.
48.Dorostkar, V., Yosefi Fard, M., & Jajarmi, Z. (2019). The effect of oil meal as a micronutrient fertilizer in saline and non-saline soils. Water and soil sciences (agricultural sciences and techniques and natural resources), 23 (2), 12.
[In Persian]
49.Bolhasani, Z., Ronaghi, A. M., Ghasemi, R., & Zarei, M. (2019). The effect of rice husk biochar and growth promoting bacteria on yield and chemical composition of spinach in soil under salinity stress. Soil Research (Soil
and Water Sciences)
, 33 (3), 335-349. [In Persian]
50.Abbaszadeh, B., Asadi Sanam, S., & Layegh Haghighi, M. (2019). Changes in morphophysiological characteristics and phenolic compounds of olive leaves (Olea europaea L.) with soil application of chemical and organic fertilizers.
Plant Production Research
, 26 (3), 20. doi: 10.22069/jopp.2019.15532.2395. [In Persian]
51.Zolfaghari, M., Tolideh, S., Sedighi dehkordi, F., & Mahmoudi Sarvestani, M. (2022). Investigating the growth, yield and essential oil of the coriander medicinal plant (Coriandrum sativum L.) under mycorrhizal, vermicompost and chemical fertilizer treatments. Journal of Agricultural Knowledge and Sustainable Production, 32 (1), 35-46. [In Persian]
52.Dag, A., Yermiyahu, U., Ben-Gal, A., Zipori, I., & Kapulnik, Y. (2009). Nursery and post-transplant field response of olive trees to arbuscular mycorrhizal fungi in an arid region. Crop & Pasture Science, 60, 427-433. doi: 10.1071/CP08143.
53.Vahedi, S., Besharat, S., Davatgar, N., & Taheri, M. (2022). Investigating the role of nutritional status of leaves on photosynthetic indices of olive tree. Horticultural Sciences of Iran, 53 (2), 309-320. doi: 10.22059/ijhs. 2020.300543.1787. [In Persian]
54.Sosa, de L. L., Benítez, E., Girón, I., & Madejón, E. (2021). Agro-Industrial and Urban Compost as an Alternative of Inorganic Fertilizers in Traditional Rainfed Olive Grove under Mediterranean Conditions. Agronomy, 11, 1223. doi.org/10.3390/agronomy 11061223.
55.Malakar, C., Barman, D., Kalita, M. C., & Deka, S. (2023). A biosurfactant-producing novel bacterial strain isolated from vermicompost having multiple plant growth-promoting traits. Journal of Basic Microbial, 63 (7), 746-758. doi.org/10.1002/jobm.202200608.