تأثیر گونه‌های گیاهی بر برخی ویژگی‌های فیزیکوشیمیایی خاک‌های تالابی تحت تأثیر فعالیت‌های بادی در یک منطقه فوق‌خشک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد ، علوم و مهندسی خاک، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران.

2 استادیار، گروه علوم و مهندسی خاک، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران.

3 دانشیار ، گروه علوم و مهندسی خاک، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران.

4 استادیار، گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه زابل، زابل، ایران.

5 مربی، گروه علوم و مهندسی خاک، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران.

چکیده

سابقه و هدف: پوشش‌های گیاهی از ویژگی‌های خاک تأثیر می‌پذیرد و متقابلاً بر همان ویژگی‌های خاک نیز تأثیر دارد؛ با این وجود بررسی این اثرات در تالاب‌ها به‌ویژه در مناطق خشک و تحت تأثیر فرایندهای بادی کمتر مورد توجه پژوهشگران قرار گرفته است. این پژوهش با هدف بررسی و تعیین برخی خصوصیات فیزیکی و شیمیایی خاک تحت پوشش گونه‌های گیاهی غالب در تالاب بین‌المللی هامون شامل: گز (Tamarix stricta)،‌ اشک (Cyperus rotundus)، بونی (Aeluropus lagopoides)، شور (Halocnenum strobilaceum)، نی (Phragmites communis) و مقایسه ‌آن‌ها با خاک شاهد انجام شد.
مواد و روش‌ها: بدین منظور از خاک هر یک از پوشش‌ گونه‌های گیاهی مذکور و خاک بدون پوشش گیاهی (شاهد) تعداد 25 نمونه، مجموعاً 150 نمونه خاک، از عمق20-0 سانتی‌متری با روش نمونه‌برداری تصادفی نظارت شده، تهیه گردید. سپس ویژگی‌های خاک شامل: بافت، جرم مخصوص ظاهری، درصد رطوبت اشباع، پ‌هاش (pH)، قابلیت هدایت الکتریکی (EC)، کلسیم، منیزیم و سدیم محلول و نسبت جذب سطحی سدیم (SAR) به روش‌های استاندارد اندازه‌گیری و تعیین گردید. تجزیه ‌واریانس داده‌ها در قالب طرح کاملاً تصادفی و مقایسه میانگین‌ داده‌ها نیز با آزمون حداقل اختلاف معنی‌دار (LSD) با استفاده از نرم افزار Statistix 10انجام شد.
یافته‌ها: نتایج نشان داد که خاک‌های تحت پوشش ‌گونه‌های P. communis بیشترین درصد رس (16/36%)؛ H. strobilaceum بیشترین درصد سیلت (84/55%)؛T. stricta بیشترین درصد شن خاک (84/26%) را داشتند. علی رغم تفاوت درصد اندازه ذرات خاک پوشش‌های مختلف گیاهی و شاهد، کلاس بافت خاک شاهد (لوم رسی)، A. lagopoides و T. stricta (لوم سیلتی)، C. rotundus، H. strobilaceum و P. communis (لوم رس سیلتی) تعیین شد؛ که نشان دهنده سوق یافتن بافت خاک‌های تحت پوشش گیاهی به سمت بافت‌های سبکتر است. علاوه بر این خاک تحت پوشش C. rotundus بیشترین درصد رطوبت اشباع (38/49%) و کمترین جرم مخصوص ظاهری ( g cm-349/1)؛ خاک فاقد پوشش گیاهی نیز بیشترین مقادیر EC (dS m-1 07/23)، pH (69/8) و SAR (17/51) را دارا بود.
نتیجه‌گیری: به‌طور کلی می‌توان گفت که حضور پوشش‌های گیاهی مورد مطالعه نقش مثبت و کلیدی در بهبود ویژگی‌های فیزیکی و شیمیایی خاک دارد. تغییرات اندازه ذرات خاک بسیار تحت تأثیر فرسایش بادی حاکم در منطقه بود و به صورت غیر معمول اما منطقی رخ ‌داده است. همچنین به علت شرایط اقلیمی (خشکی و باد شدید) و ژئومورفولوژیکی (اراضی پست مسطح) حاکم بر تالاب‌ هامون، با از بین رفتن پوشش گیاهی فرایند شور و سدیمی شدن با سرعت و در سطح وسیعتری از خاک تالاب هامون اتفاق خواهد افتاد که نهایتاً تخریب خاک آن اجتناب ناپذیر خواهد شد. از این رو حفظ پوشش گیاهی در بستر تالاب‌های مناطق خشک برای پیشگیری از تخریب اراضی و متعاقباً پیامدهای زیست محیط آن‌ها بسیار ضروری و مهم است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The impact of plant species on some physicochemical properties of wetland soils under the influence of aeolian activities in a hyper arid region

نویسندگان [English]

  • Hafaseh Shoja Hormozzaie 1
  • Ebrahim Shirmohammadi 2
  • Ali Shahriari 3
  • Vahid Rahdari 4
  • Abolfazl Bameri 5
1 M.Sc. Graduate of Soil Science and Engineering, Faculty of Water and Soil, University of Zabol, Zabol, Iran.
2 Corresponding Author, Assistant Prof., Dept. of Soil Science and Engineering, Faculty of Water and Soil, University of Zabol, Zabol, Iran
3 Associate Prof., Dept. of Soil Science and Engineering, Faculty of Water and Soil, University of Zabol, Zabol, Iran
4 . Assistant Prof., Dept. of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Iran
5 Instructor, Dept. of Soil Science and Engineering, Faculty of Water and Soil, University of Zabol, Zabol, Iran.
چکیده [English]

Background and Objectives: Plant species affect soil properties and soil properties in turn affect those same plant species. However, studies of these effects in wetlands, especially in arid areas under the influence of aeolian processes, have received less attention from researchers. This research was conducted with the aim of studying and determining some physical and chemical characteristics of soil under the dominant plant species in the Hamoun International Wetland including: Tamarix stricta, Cyperus rotundus, Aeluropus lagopoides, Halocnenum strobilaceum, Phragmites communis and comparing them with the control soil.
Materials and Methods: For this purpose, 25 samples of soil from each plant species cover mentioned above and soil without vegetation (control), totaling 150 soil samples, were taken from a depth of 0-20 cm using a supervised random sampling method. Then the soil properties including: soil texture, bulk density, saturated moisture percentage, reaction (pH), electrical conductivity (EC), soluble calcium, magnesium and sodium and sodium adsorption ratio (SAR) were measured and determined using standard methods. The analysis of variance of the data was conducted using a completely randomized design and the comparison of mean data was also performed using the least significant difference test (LSD) using the Statistix 10 software.
Results: The results showed that the soils under the coverage of P. communis species had the highest percentage of clay (16.36%), H. strobilaceum had the highest percentage of silt (84.55%), and T. stricta had the highest percentage of soil sand (84.26%). Despite the differences in the percentages of soil particle sizes of different plant covers and control, the soil texture class of the control (clay loam), A. lagopoides and T. stricta (silt loam), C. rotundus, H. strobilaceum and P. communis (silty clay loam) were determined; indicating a tendency of the textures of soils under plant cover toward coarser textures. Furthermore, the soil under C. rotundus cover had the highest saturated moisture percentage (49.38%) and lowest bulk density (1.49 g cm-3); the soil without vegetation (control) also had the highest amounts of EC (23.07 dS m-3), pH (8.69) and SAR (51.17).
Conclusion: In general, it can be said that the presence of the plant covers studied plays a positive and key role in improving the physical and chemical properties of the soil. The changes in soil particle size were greatly impacted by the dominant wind erosion in the area and occurred in an unusual yet logical manner. Removing the plant cover will cause the process of soil salinization and sodification to occur more rapidly and on a larger scale throughout the Hamoun wetland soils. This is because of the climatic conditions (aridity and strong winds) and geomorphological circumstances (flat lowlands) governing the Hamoun wetlands. Ultimately, this will inevitably lead to the degradation of these soils. Therefore, conserving plant cover in the beds of wetlands located in arid areas is extremely important and necessary to prevent soil degradation and subsequently mitigate the associated environmental consequences.

کلیدواژه‌ها [English]

  • Soil texture change
  • Salinization
  • Sodification
  • Soil degradation
  • Hamoun International Wetland
1.Melendez-Pastor, I., Navarro-Pedreño, J., Gómez, I., & Koch, M. (2008). Identifying optimal spectral bands to assess soil properties with VNIR radiometry in semi-arid soils. Geoderma, 147 (4), 126-132. doi: 10.1016/j. geoderma.2008.08.004.
2.Sidari, M., Ronzello, G., Vecchio, G., & Muscolo, A. (2008). Influence of slope aspects on soil chemical and biochemical properties in a Pinus laricio forest ecosystem of Aspromonte (Southern Italy). European Journal of Soil Biology, 44, 364-372. doi.org/10.1016/j.ejsobi. 2008.05.001.
3.Akbari-Shahriari, F., Boroomand, N., Shahriari, A., Shirmohammadi, E., & Fazeli-Nasab, B. (2023). The effect of land use changes on soil organic carbon and determination of the affecting soil factors in a bio-sequence (Case study: Jazink region of Sistan plain). Journal of Water and Soil Conservation, 30 (1), 131-150. doi: 10.22069/jwsc. 2023.20864.3604. [In Persian]
4.Zhu, H., He, X., Wang, K., Su, Y., & Wu., J. (2012). Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a Karst ecosystem. European Journal of Soil Biology, 51, 1-7. doi:10.1016/j.ejsobi. 2012.03.003.
5.Sadeghi Shahrakht, T., Jankju, M., & Mesdaghi, M. (2013). Effects of shrub canopy on the microclimate and soil properties of steppe rangeland. Jornal of Rangeland Science, 3 (3), 213-222.
6.Sahihi, T., Jafari, M., Javadi, S. A., & Tahmoures, M. (2020). Investigation of Phytoremediation Ability of Rangeland Species in Soils Contaminated with Copper and Manganese. Iranian Journal of Soil and Water Research, 51 (6), 1593-1604. doi:10.22059/ijswr. 2020.293146.668417. [In Persian]
7.Comole, A. A., Malan, P. V., & Tiawoun, M. A. P. (2021). Effects of Prosopis velutina invasion on soil characteristics along the riverine system of the Molopo river in north-west province, south Africa. Hindawi International Journal of Ecology, 6681577, 1-11. doi.org/10.1155/ 2021/6681577.
8.Han, C., Liu, Y., Zhang, C., Li, Y., Zhou, T., Khan, S., Chen, N., & Zhao, C. (2021). Effects of three coniferous plantation species on plant‐soil feedbacks and soil physical and chemical properties in semiarid mountain ecosystems. Forest Ecosystems, 8 (3), 1-13. doi:10.1186/ s40663-021-00281-4.
9.Li, Y., Han, C., Sun, S., & Zhao, C. (2021). Effects of tree species and soil enzyme activities on soil nutrients in dryland plantations. Forests, 12 (9), 1-23. doi.org/10.21203/rs.3.rs-681222/v1.
10.Alam, H., Zamin, M., Adnan, M., Ahmad, N., Nawaz, T., Saud, S., Basir, A., Liu, K., Harrison, M. T., Hassan, S., Alharby, H. F., Alzahrani, Y. M., Alghamdi, S. A., Majrashi, A., Alharbi, B. M., Alabdallah, N. M., & Fahad, S. (2022). Evaluating the resistance mechanism of Atriplex leucoclada (Orache) to salt and water stress A potential crop for biosaline agriculture. Frontiers in Plant Science (Sec. Crop and Product Physiology), 13, 1-12. doi.org/10.3389/fpls.2022.948736.
11.Adib, A., Oulapour, M., & Chatroze, A. (2018). Effects of wind velocity and soil characteristics on dust storm generation in Hawr-al-Azim Wetland, Southwest Iran. Caspian Journal of Environmental Sciences, 16 (4), 333-374. doi: 10.22124/ cjes.2018.3202.
12.Miri, A., Shirmohammadi, A., & Sorooshian, A. (2023). Impacts of dust storms on indoor and outdoor bioaerosol concentration in the Sistan region of Iran. Journal of Building Engineering, 76, 1-17. doi.org/10.1016/j.jobe.2023. 107302.
13.Rashki, A., Middleton, N. J., & Goudie, A. S. (2021). Dust storms in Iran – Distribution, causes, frequencies and impacts. Aeolian Research, 48, 1-17. doi.org/10.1016/j.aeolia.2020.100655.
14.Akbari, M., Mirchi, A., Roozbahani, A., Gafurov, A., Kløve, B., & Torabi Haghighi, A. (2022). Desiccation of the transboundary Hamun lakes between Iran and Afghanistan in response to hydro-climatic droughts and anthropogenic activities. Journal of Great Lakes Research, 48 (4), 876-889. doi.org/10. 1016/j.jglr.2022.05.004.
15.Rashki, A., Kaskaoutis, D. G., Rautenbach, C., Eriksson, P. G., Qiang, M., & Gupta P. (2012). Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Research, 5, 51-62. doi.org/10.1016/j.aeolia.2011. 12.001.
16.Siasar, H., Salari, A., Mohamadrezapour, O., & Piri, H. (2022). Estimating Daily Reference Evapotranspiration in Sistan Plain Using Ultra-Innovative Algorithms. Desert Ecosystem Engineering, 10 (32), 85-96. doi: 10.22052/deej.2021.10.32.49. [In Persian]
17.Lalozaei, A., Dahmardeh Ghaleno, M., & Ebrahimi, M. (2015). Effect of the tree windbreakers of Tamarix and Eucalyptus on some ‎physical and chemical properties of soil in Hamoon Plain. Watershed Engineering and Management, 7 (4), 536-542. doi.org/10. 22092/ijwmse.2015.103140. [In Persian]
18.Shahmohammadi, Z. & Maleki, S. (2011). The Life of Hamun. Zabul University Publications. 250p. [In Persian]
19.Mirakzehi, K., Pahlavan-Rad, M., Shahriari, A., & Bameri, A. (2018). Digital soil mapping of deltaic soils: a case of study from Hirmand (Helmand) river delta. Geoderma, 313, 233-240. doi.org/10.1016/j.geoderma.2017.10.048.
20.Jahantigh, M. (2015). Compare forage product of Aeluropus lagopides in Hamoun wetland in normal year
and drought. Wetland Ecobiology, 6 (4), 73-83. [In Persian]
21.Pirozi, N., Kohandel, A., Jafari, M., Tavili, A., & Mortezaii Farizhendi, G. (2017). Distribution pattern of oak species (Quercus brantii) and its relationship with some soil factors (case study: in Khanmirza region, Chaharmahal va Bakhtiari). Journal of Plant Ecosystem Conservation, 5 (10), 101-117. [In Persian]
22.Bidarnamani, F. & Shabanipour, M. (2019). Evaluation of species diversity and spatial distribution characteristics of five dominant plant species in Hamoon wetlands. Journal of Plant Ecosystem Conservation, 7 (14), 67-86. [In Persian]
23.Iranmanesh, M., Najafi, S., & Yosefi, M. (2010). Studies on Ethnobotany of important medicinal plants in Sistan. Journal of Medicinal Herbs. "Journal of Medicinal Herbs" (Formerly known as Journal of Herbal Drugs or J. Herb Drug), 1 (2), 58-65. [In Persian]
24.Shafei, H., & Hosseini, S. M. (2011). A study of vegetation in Sistan region through satellite data. Journal of Plant Ecophysiology, 3 (9), 91-104. [In Persian]
25.Ebrahimzadeh, I. (2009). Analysis of the Recent Droughts and Lack of Water in Hamoon Lake on Sistan Economic Functions. Iran-Water Resources Research, 5 (2), 71-76. [In Persian]
26.Shahrabi, M. (2011). Hamoun lake. Journal of development of geoscience education, 65, 18-23. [In Persian]
27.Behrouzirad, B. (2008). Iranian Wetlands. Tehran: Geographical Organization of the Armed Forces Publications. 812 p.
[In Persian]
28.Nouri, G., Arbabi, T., & Nouri, S. (2007). Hamoun Wetland: The Life of Sistan. Sepehr Publishing Center. 152 p. [In Persian]
29.Dane, J. H., & Topp, G. C. (Eds.) (2002) Methods of Soil Analysis, Part 4, Physical Methods. Soil Science Society of America Book Series, No. 5, Soil Science Society of America, Madison, 1692 p.
30.Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (1996). Methods of Soil Analysis Part 3-Chemical Methods. Soil Science Society of America Book Series 5.3. Madison, WI: Soil Science Society of America, American Society of Agronomy. 1387 p.
31.Hem, J. D. (1985) Study and Interpretation of the Chemical Characteristics of Natural Water. 3rd Edition, US Geological Survey Water-Supply Paper 2254, University of Virginia, Charlottesville, 263 p.
32.Assefa, F., Elias, E., Soromessa, T., & Ayele, G. T. (2020). Effect of changes in land-use management practices on soil physicochemical properties in kabe watershed, Ethiopia. Air, Soil and Water Research, 13, 1-16. doi.org/10.1177/ 1178622120939587.
33.Andrade, E. M., Valbrun, W., Almeida, A. M. M., Rosa, G., & Silva, A. G. R. (2020). Land-use effect on soil carbon and nitrogen stock in a seasonally dry tropical forest. Agronomy, 10 (2), 1-14. doi.org/10.3390/agronomy10020158.
34.Panday, D., Ojha, R. B., Chalise, D., Das, S., & Twanabasu, B. (2019). Spatial variability of soil properties under different land use in the Dang district of Nepal. Cogent Food and Agriculture, 5, 1-19. doi.org/10.1080/ 23311932.2019.1600460.
35.Szoboszlay, M., Dohrmann, A. B., Poeplau, C., Don, A., & Tebbe, C. C. (2017). Impact of land-use change and soil organic carbonquality on microbial diversity in soils across Europe. FEMS Microbiology Ecology, 93 (12), 1-12. doi.org/10.1093/femsec/fix146.
36.Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 1-8. doi.org/10.1016/j.envint.2019.105078.
37.Willy, D. K., Muyanga, M., Mbuvi, J., & Jayne, T. (2019). The effect of land use change on soil fertility parameters in densely populated areas of Kenya. Geoderma, 343, 254-262. doi.org/10. 1016/j.geoderma.2019.02.033.
38.Behrooz, R. D., Mohammadpour, K., Broomandi, P., Kosmopoulos, P. G., Gholami, H., & Kaskaoutis, D. G. (2022). Long-term (2012–2020) PM10 concentrations and increasing trends in the Sistan Basin: The role of Levar wind and synoptic meteorology. Atmospheric Pollution Research, 13 (7), 101460. doi.org/10.1016/j.apr.2022.101460.
39.Neyshabouri, M. R., Ahmadi, A. Rouhipour, H., Asadi, H., & Irannajad, M. (2011). Soil texture fractions and fractal dimension of particle size distribution as predictors of interrill erodibility. Turkish Journal of Agriculture and Forestry, 35 (1), 1-9. doi.org/10.3906/tar-0911-30.
40.Opp, C., Groll, M., Abbasi, H. R., & Ahmadi Foroushani, M. (2021). Causes and effects of sand and dust storms: What has past research taught us? A survey. Journal of Risk and Financial Management, 14, 1-25. doi.org/10.3390/ jrfm14070326.
41.Attiya, A. A., & Jones, B. G. (2020). Assessment of mineralogical and chemical properties of airborne dust in Iraq. SN Applied sciences, 2, 1-21. doi.org/10.1007/s42452-020-03326-5.
42.Tegen, I., & Fung, I. (1994). Contribution to the Atmospheric Mineral Aerosol Load from Land Surface Modification. Journal of Geophysical Research, 100, 18707-18726. doi:10.1029/95JD02051.
43.Kok, J. F., Parteli, E. J. R., Michaels, T. I., & Karam, D. B. (2012). The physics of wind-blown sand and dust. Reports on Progress in Physics, 75 (10), 1-120. doi: 10.1088/0034-4885/ 75/10/106901.
44.Mayaud, J. R., Wiggs, G. F., & Bailey, R. M. (2016). Dynamics of skimming flow in the wake of a vegetation patch. Aeolian Research, 22, 141-151. doi.org/10.1016/j.aeolia.2016.08.001.
45.Wolfe, S. A., & Nickling, W. G. (1993). The protective role of sparse vegetation in wind erosion. Progress in Physical Geography. Earth and Environment, 17 (1), 50-68. doi.org/10.1177/ 030913339301700104.
46.Hesp, P. A. (1981). The formation of shadow dunes. Journal of Sedimentary Research, 51 (1), 101-112. doi.org/10. 1306/212F7C1B-2B24-11D7-8648000 102C1865D.
47.Miri, A., Dragovich, D., & Dong, Z. (2017). Vegetation morphologic and aerodynamic characteristics reduce aeolian erosion. Scientific Reports, 7 (1), 1-9. doi.org/10.1038/s41598-017-13084-x.
48.Miri, A., Dragovich, D., & Dong, Z. (2018). The response of live plants to airflow–Implication for reducing erosion. Aeolian Research, 33, 93-105. doi.org/10.1016/j.aeolia.2018.06.002.
49.Torshizi, M. R., Miri, A., Shahriari, A., Dong, Z., & Davidson-Arnott, R. (2020). The effectiveness of a multi-row Tamarix windbreak in reducing aeolian erosion and sediment flux, Niatak area, Iran. Journal of Environmental Management, 265: 1-12. doi.org/10. 1016/j.jenvman.2020.110486.
50.Rouhi-Moghaddam, E., Sargazy, E., & Gholamalizadeh, A. (2015). Ecological Properties of Tamarix Habitats in Sistan Plain, Iran. ECOPERSIA, 3 (4), 1201-1211. dor/20.1001.1.23222700.2015.3.4.7.7.
51.Mohsenzadeh, S., Malboobi, M. A., Razavi K., & Farrahi-Aschtiani, S. (2006). Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit. Environmental and Experimental Botany, 56, 314-322. doi.org/10.1016/j.envexpbot.2005.03.008.
52.Dar, B. A., Assaeed, A. M., Al-Rowaily, S. L., Al-Doss, A. A., Habib, M. M., Malik, J. A., & Abd-ElGawad, A. M. (2024). Effect of Simulated Grazing on Morphological Plasticity and Resource Allocation of Aeluropus lagopoides. Agronomy, 14, 1-16. doi.org/10.3390/ agronomy1401014.
53.Aali, K. A., Parsinejad, M., & Rahmani, B. (2009). Estimation of saturation percentage of soil using multiple regression, ANN, and ANFIS techniques. Computer and Information Science, 2 (3), 127-136. doi.org/10. 5539/cis.v2n3p127.
54.Gentry, T. J., Fuhrmann, J. J., & Zuberer, D. A. (2021). Principles and Applications of Soil Microbiology (Third Edition). Elsevier, 742p.
55.Pereira, S. I. A., Abreu, D., Moreira, H., Vega, A., & Castro, P. M. L. (2020). Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 6 (10), 1-9. doi:10.1016/j.heliyon.2020. e05106.
56.Cui, S. W., Nie, S., & Roberts, K. T. (2011). Functional Properties of Dietary Fiber. Comprehensive Biotechnology, 517-525. doi:10.1016/b978-0-08-088504- 9.00315-9.
57.Pinton, R., Varanini, Z., & Nannipieri, P. (2007). The Rhizosphere Biochemistry and Organic Substances at the Soil-Plant Interface. CRC Press Taylor & Francis Group. LLC. 438 p.
58.Chau, J. F., Bagtzoglou, A. C., & Willig, M. R. (2011). The effect of soil texture on richness and diversity of bacterial communities. Environmental Forensics, 12 (4), 333-341. doi:10.1080/ 15275922.2011.622348.
59.Kroener, E., Holz, M., Zare, M., Ahmed, M., & Carminati, A. (2018). Effects of mucilage on rhizosphere hydraulic functions depend on soil particle size. Vadose Zone Journal, 17 (1), 1-11. doi:10.2136/vzj2017.03.0056.
60.Han, Y. Z., Zhang, J. W., Mattson, K. G., Zhang, W. D., & Weber, T. A. (2016). Sample sizes to control error estimates in determining soil bulk density in California forest soils. Soil Science Society of America Journal, 80, 756-764. doi:10.2136/sssaj2015. 12.0422.
61.Walter, K., Don, A., Tiemeyer, B., & Freibauer, A. (2016). Determining soil bulk density for carbon stock calculations: A systematic method comparison. Soil Science Society of America Journal, 80, 579-591. doi.org/ 10.2136/sssaj2015.11.0407.
62.Al-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M., & Gates, W. (2018). Soil bulk density estimation methods: A Review. Pedosphere, 28 (4), 581-596. doi.org/ 10.1016/S1002-0160(18)60034-7.
63.Mukhopadhyay, S., Masto, R. E., Tripathi, R. C., & Srivastava, N. K. (2019). Application of Soil Quality Indicators for the Phytorestoration of Mine Spoil Dumps. Phytomanagement of Polluted Sites, Elsevier, 361-388. doi.org/10.1016/B978-0-12-813912-7. 000 14-4.
64.Wang, C., Zhao, C., Xu, Z., Wang, Y., & Peng, H. (2013). Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment. Journal of Arid Land, 5, 207-219. doi.org/10.1007/s40333-013-0151-5.
65.Etehadi Abari, M., Majnounian, B., Malekian, A., & Jourgholami, M. (2017). Effects of forest harvesting on runoff and sediment characteristics in the Hyrcanian forests, northern Iran. European Journal of Forest Research, 136, 375-386. doi.org/10.1007/s10342-017-1038-3.
66.Ahad, T., Kanth, T. A., & Nabi, S. (2015). Soil bulk density as related to texture, organic matter content and porosity in kandi soils of district kupwara (Kashmir Valley), India. International Journal of Scientific Research, 4 (1), 2277-8179.
67.Robinson, D. A., Thomas, A., Reinsch, S., Lebron, I., Feeney, C. J., Maskell, L. C., Wood, C. M., Seaton, F. M., Emmett, B. A., & Cosby, B. J. (2022). Analytical modelling of soil porosity and bulk density across the soil organic matter and land-use continuum. Scientific Reports, 12 (1), 1-13. doi.org/10.1038/s41598-022-11099-7.
68.García-Orenes, F., Guerrero, C., Mataix-Solera, J., Navarro-Pedreño, J., Gómez, I., & Mataix-Beneyto, J. (2005). Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids. Soil and Tillage Research, 82 (1), 65-76. doi.org/10.1016/j.still.2004.06.004.
69.Ali-Soufi, M., & Shahriari, A. (2020). Investigation of some chemical properties and amounts of some nutrient elements associated with dust in Sistan Plain. Journal of Natural Environmental Hazards, 9 (23), 99-116. doi.org/10. 22111/jneh.2019.29207.1504. [In Persian]
70.Gholamalizadeh Ahangar, A., Sarani, F., Hashemi, M., & Shabani, A. (2016). Comparison of Linear Regression Methods, Geostatistical and Artificial Neural Network Modeling of Organic Carbon in Dry Land of Sistan Plain. Water and Soil, 28 (6), 1250-1260.
doi.org/ 10.22067/ jsw.v0i0.32714.
n Persian]
71.Hashemi, M., Gholamalizadeh Ahangar, A., Bameri, A., Sarani, F., & Hejazizadeh, A. (2016). Survey and Zoning of Soil Physical and Chemical Properties Using Geostatistical Methods in GIS (Case Study: Miankangi R
egion in Sistan). Water and Soil, 30 (2), 443-458. doi.org/10.22067/jsw. v30i2.25950. [In Persian]
72.Amini, D., Tavakoli, M., & faramarzi, M. (2020). Investigation of the Relationship Between Soil Salinity Trend, Land Use and Climatic Factors Change (Case Study: Shadegan, Khuzestan). Journal of Environmental Science and Technology, 22 (9), 43-58. doi.org/10.22034/jest.2021.21834.3089. [In Persian]
73.Miri, A. (2020). Dust storms analysis in the Sistan region using DDI and DSI indices and wind speed, visibility and PM10 parameters. Journal of Water and Soil Conservation, 27 (1), 1-23. doi.org/10. 22069/jwsc.2020.16883.3225. [In Persian]
74.Ahmadi, A., Zahedi Amiri, G., Mahmoodi, S., & Moghiseh, E. (2007). Soil-vegetation relationships in saliferous and gypsiferous soils in winter rangelands (Eshtehard). Journal of the Iranian Natural Research, 60 (3), 1049-1058.
[In Persian]
75.Hag Husein, H., Lucke, B., Bäumler, R., & Sahwan, W. (2021). A contribution to soil fertility assessment for arid and semi-arid lands. Soil Systems, 5 (42), 1-13. doi.org/10.3390/soilsystems5030042.
76.Akbarlou, M., Yar, S., & Mohammad Esmaeili, M. (2012). Study on the relationship between soil physico-chemical properties and plant communities parameters (Case Study: Ghareh Tappeh Area, Saveh). Journal of Water and Soil Conservation, 19 (2), 193-199. [In Persian]
77.McNear, Jr., D.H. (2013). The Rhizosphere-Roots, Soil and Everything In Between. Nature Education Knowledge, 4 (3), 1-16.
78.Molnár, Z., Solomon, W., Mutum, L., & Janda, T. (2023). Understanding the mechanisms of Fe deficiency in the rhizosphere to promote plant resilience. Plants (Basel), 12 (10), 1-13. doi.org/10.3390/plants12101945.
79.Akhtaruzzaman, Md., Roy, S., Mahmud, M. S., & Shormin, T. (2020). Soil properties under different vegetation types in chittagong university campus, bangladesh. Journal of Forest and Environmental Science, 36 (2), 133-142. doi.org/10.7747/JFES.2020.36.2.133.
80.Sparks, D. L. (2024). The Chemistry of Saline and Sodic Soils. P 411-438, In Environmental Soil Chemistry (3rd Edition), Academic Press. doi.org/10. 1016/B978-0-443-14034-1.00010-1.
81.Zhao, Y., Zhang, Z., Li, Z., Yang, B., Li, B., Tang, X., & Lai, Y. (2023). Comprehensive study on saline-alkali soil amelioration with sediment of irrigation area in northeast China. Arabian Journal of Chemistry,
16 (4), 104608. doi.org/10.1016/j. arabjc.2023.104608.
82.Li, F. Z., Huang, Z. B., Ma, Y., & Sun, Z. J. (2018). Improvement effects of different environmental materials on coastal saline-alkali soil in yellow river delta. Materials Science Forum, 913 (1), 879-886. doi.org/10.4028/ www.scientific.net/MSF.913.879.83.Sharifi, P., Shorafa, M., & Mohammadi, M. H. (2019). Comparison of the effect of Cow manure, vermicompost and Azolla on safflower growth in a
saline-sodic soil. Communications in Soil Science and Plant Analysis, 50 (12), 1417-1424. doi.org/10.22069/ ejsms.2020.16189.1868. [In Persian]
84.Khashi, K., Azhdary Moghaddam, M., & Hashemi Monfared, A. (2022). Water Demand Investigation in Sabouri Hamoon Wetland to Reduce Dust Propagation in Zabol City Using Satellite Images. Iranian journal of Ecohydrology, 9 (4), 761-770. doi.org/10. 22059/ije.2023.351438.1699. [In Persian]