1.Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., & Dasgupta, P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc.
2.Shukla, P. R., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H. O., Roberts, D., Zhai, P., Slade, R., Connors, S., & Van Diemen, S. (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
3.Chen, H., & Sun, J. (2015). Assessing model performance of climate extremes in China: an intercomparison between CMIP5 and CMIP3. Climatic Change, 129, 197-211. doi: 10.1007/s10584-014-1319-5.
4.Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., & Lamarque, J.-F. (2011). The representative concentration pathways: an overview. Climatic Change, 109, 5-31. doi: 10.1007/s10584-011-0148-z.
5.Eyring, V., Bony, S., Meehl, G., Senior, C., Stevens, B., Stouffer, R., & Taylor, K. (2015). Overview oftheCoupledModel Intercomparison Project Phase 6 (CMIP6) experimental design and organisation. Geoscientific Model Development Discussions, 8(12). doi: org/10.5194/ gmd-9-1937-2016.
6.O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J. F., & Lowe, J. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9),3461-3482. doi: 10.5194/gmd-9-3461-2016.
7.Sha, J., Li, X., & Wang, Z. L. (2019). Estimation of future climate change in cold weather areas with the LARS-WG model under CMIP5 scenarios. Theoretical and Applied Climatology, 137, 3027-3039. doi: 10.1007/s00704-019-02781-4.
8.Hoshiar, M. (2019). Forecasting Climate Changes of Iran Based onModels of CMIP5. Shahid Beheshti University of Iran, doctoral thesis (Ph.D.). [In Persian]
9.Sa'adi, Z., Shahid, S., Chung, E. S., & Bin Ismail, T. (2017). Projection of spatial and temporal changes of rainfall in Sarawak of Borneo Island using statistical downscaling of CMIP5 models. Atmospheric research, 197, 446-460. doi: org/10.1016/j.atmosres.2017.08.002.
10.Su, B., Huang, J., Gemmer, M., Jian, D., Tao, H., Jiang, T., & Zhao, C. (2016). Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin. Atmospheric research, 178,138-149. doi: org/10.1016/j.atmosres.2016.03.023.
11.Feng, S., Hu, Q., Huang, W., Ho, C. H., Li, R., & Tang, Z. (2014). Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Global and Planetary Change, 112,41-52. doi: org/ 10.1016/j.gloplacha.2013.11.002.
12.Kamruzzaman, M., Wahid, S., Shahid, S., Alam, E., Mainuddin, M., Islam, H. T., Cho, J., Rahman, M. M., Biswas, J. C., & Thorp, K. R. (2023). Predicted changes in future precipitation and air temperature across Bangladesh using CMIP6 GCMs. Heliyon, 9(5). doi: org/ 10.1016/j.heliyon.2023.e16274.
13.Kamworapan, S., Thao, P. T. B., Gheewala, S. H., Pimonsree, S., & Prueksakorn, K. (2021). Evaluation of CMIP6 GCMs for simulations of temperature over Thailand and nearby areas in the early 21st century. Heliyon, 7(11). doi:org/10.1016/j.heliyon.2021. e08263.
14.Yue, Y., Yan, D., Yue, Q., Ji, G., & Wang, Z. (2021). Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmospheric research, 264, 105828. doi: org/10.1016/j. atmosres.2021.105828.
15.Gupta, V., Singh, V., & Jain, M. K. (2020). Assessment of precipitation extremes in India during the 21st century under SSP1-1.9 mitigation scenarios of CMIP6 GCMs. Journal of Hydrology, 590, 125422. doi: org/10. 1016/j.jhydrol.2020.125422.
16.Racsko, P., Szeidl, L., & Semenov, M. (1991). A serial approach to local stochastic weather models. Ecological modelling, 57(1-2), 27-41. doi: org/10. 1016/03043800(91)90053-4.
17.Semenov, M. A., Brooks, R. J., Barrow, E. M., & Richardson, C. W. (1998). Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate research, 10(2), 95-107. doi: org/10.3354/cr010095.
18.Semenov, M. A., & Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate research, 41(1), 1-14. doi: 10. 3354/cr00836.
19.Aghashahi, M., Ardestani, M., Nik Sokhan, M. H., & Tahmasebi, B. (2012). Introduction and comparison
of LARS-WG and SDSM models
for microscaling of environmental parameters in climate change studies, 6th National Conference and Specialized Exhibition of Environmental Engineering, Tehran. https://civilica.com/doc/170203. [In Persian]
20.Yaghoub Zadeh, M., Ahmadi, M., Seyed Kaboli, H., Zamani, G. R., & Amir Abadi Zadeh, M. (2017). The evaluation of Effect of Climate Change on Agricultural Drought Using ETDI and SPI Indexes.
Journal of Water
and Soil Conservation, 24(4), 43-61.
doi: 10.22069/JWFST.2017.12202.2671. [In Persian]
21.Zarei, A., Chemura, A., Gleixner, S., & Hoff, H. (2021). Evaluating the grassland NPP dynamics in response to climate change in Tanzania. Ecological Indicators, 125, 107600. doi: org/10. 1016/j.ecolind.2021.107600.
22.Lin, J. Y., Cheng, C. T., & Chau, K. W. (2006). Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal,51(4), 599-612. doi: org/10.1623/hysj. 51.4.599.
23.Hu, T., Lam, K., & Ng, S. (2001). River flow time series prediction with a range-dependent neural network. Hydrological Sciences Journal, 46(5), 729-745. doi: 10.1080/0262666 0109492867.
24.Banihashemi, S., Eslamian, S. S., & Nazari, B. (2021). Prediction of Local Alterations in the Relative Amounts of Temperature and Precipitation Caused by Climate Change in Near and Far Future, and Drought Investigation Using SPI and SPEI Indices in Qazvin Plain, Iran. Journal of Water and Soil Science, 25 (2), 25-44. doi: org/10.47176/jwss. 25.2.41271. [In Persian]
25.Mohammad Ismail, Z. (2018). Climatic changes and its impact on irrigation (case study: Qazvin region), the
third national conference on water management in the farm (central water demand), Karaj. https://civilica.com/ doc/738294. [In Persian]
26.Fereshte, F., Shiravand, H., & Hosseinzadeh, T. (2015). investigating the climate change process of Karaj city using data simulation by Lars wg, the second national conference on climate change and sustainable development engineering, agriculture and natural resources, Tehran. https://civilica.com/ doc/437348. [In Persian]
27.Alijani, B., Gharelou, R., Fatahi, E., & Hamidianpour, M. (2016). investigation of the climate change of Karaj synoptic station in the period 2010-2039 AD using statistical microscale, the first international conference on climate change, Tehran. https://civilica.com/ doc/640521. [In Persian]
28.Nazarzadeh, N., Gudarzi, M., Bahermand, A., & Nora, N. (2014). review and evaluation of Lars model according to scenario B 1 in simulating meteorological data of Taleghan watershed, 4th International Conference on Environmental Challenges and Tree Botany, Sari. https://civilica.com/doc/ 788458. [In Persian]
29.Zarrin, A., Dadashi-rodbari, A., & Salehabadi, N. (2021). Projected temperature anomalies and trends in different climate zones in Iran based on CMIP6. Iranian Journal of Geophysics, 15(1), 35-54. doi: org/10.30499/ijg. 2020.249997.1292.